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(Constrained Horn Clauses)



What are CHCs?
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SAT Problem

SMT Problem

Constrained Horn Clause 
(CHC)

Problem: find (synthesize) such interpretations of p, q, or prove it UNSAT!

CHC System

(Solution interpretations, Def. 1)

Theory: Integer Arithmetics



CHC System, Terminologies

Query

Rule
Fact (also a Rule)

Can be omitted

Theory: Integer Arithmetics
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For simplicity, trivial rules that have pre-determined truth value are omitted 



CHC solver can be a backbone for program verification

● CHC system is SAT ⇔ Program is safe

● Cast the program verification problem as 

constraint solving problem

● Naturally handles loop invariant 

generation problem (but not limited to)

An abstract interpretation of a loop
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Known as the biggest challenge 
in program verification!

Post-condition

Pre-condition

Command



CHC solver can be a backbone for program verification

We will use programs to explain CHCs

fact

query
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…
Program             CFG                 CHCs             

“Loop Invariant”



7

/
/



White-box vs. black-box approaches
● Bounded model checking (BMC): encode the initial states, k loop transitions, and bad 

states into logical formula (Can prove UNSAFE if the formula is SAT)

● Unbounded model checking: find a fixed-point through inductive generalization heuristics 

(e.g., Craig interpolants (CI), IC3, PDR, Spacer, GSpacer)

✓ Efficiently maximize the power of the solvers

X Often rely on heuristics to do inductive generalization

X Not flexible with data samples (which is cheap sometimes)

SMT encoding for k=2:

“Symbolic approaches”

                          ¬B               IA
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White-box vs. black-box approaches
● Teacher and Learner paradigm, “Guess-and-check”
● Hypothesize interpretations by induction learning
● Iteratively refine the hypothesis
✓ Can take global information into account, better generalization (using ML rather than CI)
✓ For arbitrary guesses, it’s relatively easy to get data samples as counterexamples
x Cheap prior knowledge in CHC systems is ignored
x State explosion issue exists

Theory: Integer Arithmetics

ICE: A Robust Framework for Learning 
Invariants, Garg et al., 2014

A Data-Driven CHC Solver, Zhu et al., 2018 
(LinearArbitrary)

“Data-driven approaches”
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https://link.springer.com/chapter/10.1007/978-3-319-08867-9_5
https://link.springer.com/chapter/10.1007/978-3-319-08867-9_5
https://herowanzhu.github.io/pldi2018.pdf


Motivation
● Black-box approaches is sample inefficient
● White-box methods is  1) difficult to deal with data samples

         2) hard to do inductive generalization

Theory: Integer Arithmetics

● Need many samples to “relearn” 
● Each learning iteration gives only 1 

additional sample
● Might have infinite interpretations for a 

set of positive and negative samples
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Motivation
Can we find a way to finding global patterns of CHCs without the resort to any 
hand-crafted heuristics? 

Can we make the data-driven methods more sample efficient?

Can we present symbolic and data-driven methods in a unified framework?
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Desideratum: green solid line



Contributions
- Identify and formulate the key concepts in CHC solving: samples, zones, 

counterexample, and etc. Their connection is also discussed.

- Enable synergistic working for symbolic methods and learning-based methods

- Here we don’t assume any specific algorithm for learner and reasoner

- Design a modular framework, Chronosymbolic Learning to realize the desiderata

- Naming: Synchronous, CHC, symbolic, no. (number)

- Propose a minimal instance, showing how components interact in our framework

- Provide artifacts for the minimal instance

- Give an evaluation of the instance and show the potential
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Samples

For predicate p(x, y)
● Positive samples:  

(2, 0), (2, 1), (3, 2), (5, 3), …

● Negative samples: 

(2, 3), (0, 2), (-174732, 123), …

● Implication samples: 

((2, 0), (2, 1)), ((-1, 0), (-1, 1)), …

Not necessarily samples that appears in program
But should depict the “semantics” of the loop
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(Forward) Reachable 
program configurations

Program configurations 
that is unsafe (backward 
reachable starting from 
the unsafe condition)

(Inspired by and generalized from program verification)

rules

query



Zones

For predicate p(x, y)

● Example of a safe zone:  {x > 1 ∧ y = 0}

● Example of an unsafe zone: {x < y}

(Or any zones that can be implied by current 

zones, conceptually) 
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Zones can be symbolically represented:

● Zone is a set of samples;  samples are zones (with cardinality of 1)

● Sometimes itʼs easy to know some zones (Lemma 7,8)



Some immediate useful lemmas
● Connection of solutions and samples

● Valid zones can directly extracted from the fact and query
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A valid solution interpretation should separate any positive and negative samples.



Why we need Zones?

1. Integrated into the learner’s hypothesis to enhance it (Lemma 2)

Add S:                        to the hypothesis, and the new data samples will never be in 

2. Provide the learner with additional samples (Sampling)

Sample from S:                     to get positive samples like (2, 0), (100, 0), …

3. Simplify the UNSAT checking of the CHC system
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We assume there is a solution interpretation and make hypotheses, until there is a conflict

Lemma 5 (sample-sample conflict): samples cannot be both positive and negative

Lemma 6 (sample-zone conflict): a positive sample cannot be in unsafe zones

Lemma 11: safe and unsafe zones cannot overlap



Solution space of a CHC system

The universes of safe and unsafe zones are disjoint

Zones ensure more efficient “data coverage” of Us and Uu than samples
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Safe 
Zone



Counterexamples
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● A situation that current interpretation fails

● Formulate the information the teacher provides to the learner

● Can be converted into positive / negative samples (Lemma 3,4)

● The information can potentially extended to zonal representation

For CHC (2) and p(x, y) ≡ x = y + 2:

● Example of a counterexample: (((2,0)), (2,1))

● It makes CHC (2) 

● SMTModel(¬(CHC (2) ∧ p(x, y) ≡ x = y + 2))



Chronosymbolic Learning
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In each iteration:
- The reasoner and learner propose new zones and 

partition based on current zones and samples
- Make a hypothesis based on them
- The teacher checks the satisfiability for one certain 

interpreted CHC
- If SAT, switch to another CHC
- If not SAT, return a counterexample, convert it into 

data samples
- Do UNSAT checking for CHC system (Lemma 5, 6, 

11) using samples and zones
- Sample data from zones
- If all CHC is SAT, we find the solution interpretation



Instantiations of Chronosymbolic Learning 
● Previous methods can be seen as special instances of our framework

● (6): Better state-space coverage and more efficient UNSAT checking (Lemma 2)

● For some instances, w/o S/U (4, 5) is better
○ Can be seen as different exploration strategies
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Our instance of Chronosymbolic Learning
- A data-driven learner (L) + a BMC-styled reasoner (S, U)
- makeHypothesis() is done by:                                     

- Chronosymbolic-single: Always using (6)
- Chronosymbolic-cover: alternates from (2, 3, 4, 5, 6) using some scheduling heuristics
- Ablation study: Always using (2, 3, 4, 5)
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Learner
- Collect the counterexample and convert them to positive and negative samples
- The learner contains a dataset and a machine learning toolchain (SVM+DT)

- SVM (learn arbitrary hyperplanes) + Decision Tree (tune and recombine those hyperplanes)

- Refer to our paper for further details
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A Data-Driven CHC Solver, Zhu et al., 2018 
(LinearArbitrary)

https://link.springer.com/chapter/10.1007/978-3-319-08867-9_5
https://herowanzhu.github.io/pldi2018.pdf


Reasoner

- BMC-styled image/pre-image computation

Append a transition to the current zone to expand the zone
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Major experiment settings

- 288 arithmetic instances collected by FreqHorn, including non-linear ones

- Timeout: 360s (but we also care about efficiency within this period)

- Chronosymbolic-single: one configuration (hyperparameter set and strategy) 

for all instances (Meta-Learning-liked)

- Chronosymbolic-cover: all solved instances in 13 configurations (like 

LinearArbitrary which sets specific hyperparameters for different instances)
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Experiment

● Efficient in arithmetic benchmarks

● Meet challenges in benchmarks with many Bool vars

● On our main dataset, the average time for SVM, DT, the teacher 

and reasoner are 26.68s, 4.74s, 14.58s,1.29s respectively
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Experiment

Below the diagonal: ours > baseline
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(seconds)



Ablation

Parallel: learner and reasoner running individually and simultaneously for 360s 
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(4)
(5)
(3)
(2)



Future work and discussion
- Better Learner: 

- Some better symbolic classifier that can deal with zones and samples simultaneously
- Better handling a large number of Boolean variables
- Embracing the LLMs as symbolic classifiers

- Better Reasoner:
- Go beyond BMC; e.g., model-based projection
- Add support for approximated zones (IC3/PDR), 
- Zones induced from samples (symbolic regression)
- Better procedure to simplify complicated zones
- Currently reasoner can benefit from the learner, but learner’s impact on reasoner is small

- Better Teacher:
- Can produce zonal feedback / counterexample

- Better support for NL CHCs
- Beyond Integer Arithmetics
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Thank you for your careful listening!

● Code is available here: 
https://github.com/Chronosymbolic/Chronosymbolic-Learning, with examples 
on how it works, and the detailed experimental results

● Slides can be downloaded from my personal website https://zyluo.netlify.app/
● Email me (ziyan.luo@mail.mcgill.ca) or Xujie (six@cs.toronto.edu) for further 

questions or comments
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Paper: Code:

https://github.com/Chronosymbolic/Chronosymbolic-Learning
https://zyluo.netlify.app/
mailto:ziyan.luo@mail.mcgill.ca
mailto:six@cs.toronto.edu

