
Chronosymbolic Learning

Ziyan “Ray” Luo 1,2 and Xujie Si 1,3

Efficient CHC Solving with Symbolic Reasoning and Inductive Learning

1 Mila, 2 McGill University, 3 University of Toronto

Table of contents

What are CHCs?

Why we need to solve CHCs?

How about the current CHC solvers?

How do these solvers motivate our method?

Key concepts and overall architecture of proposed framework

A simplistic instantiation of our framework

Experimental result

Future work, Q & A

2

(Constrained Horn Clauses)

What are CHCs?

3

SAT Problem

SMT Problem

Constrained Horn Clause
(CHC)

Problem: find (synthesize) such interpretations of p, q, or prove it UNSAT!

CHC System

(Solution interpretations, Def. 1)

Theory: Integer Arithmetics

CHC System, Terminologies

Query

Rule
Fact (also a Rule)

Can be omitted

Theory: Integer Arithmetics

4
For simplicity, trivial rules that have pre-determined truth value are omitted

CHC solver can be a backbone for program verification

● CHC system is SAT ⇔ Program is safe

● Cast the program verification problem as

constraint solving problem

● Naturally handles loop invariant

generation problem (but not limited to)

An abstract interpretation of a loop

5

Known as the biggest challenge
in program verification!

Post-condition

Pre-condition

Command

CHC solver can be a backbone for program verification

We will use programs to explain CHCs

fact

query

6

…
Program CFG CHCs

“Loop Invariant”

7

/
/

White-box vs. black-box approaches
● Bounded model checking (BMC): encode the initial states, k loop transitions, and bad

states into logical formula (Can prove UNSAFE if the formula is SAT)

● Unbounded model checking: find a fixed-point through inductive generalization heuristics

(e.g., Craig interpolants (CI), IC3, PDR, Spacer, GSpacer)

✓ Efficiently maximize the power of the solvers

X Often rely on heuristics to do inductive generalization

X Not flexible with data samples (which is cheap sometimes)

SMT encoding for k=2:

“Symbolic approaches”

 ¬B IA

8

White-box vs. black-box approaches
● Teacher and Learner paradigm, “Guess-and-check”
● Hypothesize interpretations by induction learning
● Iteratively refine the hypothesis
✓ Can take global information into account, better generalization (using ML rather than CI)
✓ For arbitrary guesses, it’s relatively easy to get data samples as counterexamples
x Cheap prior knowledge in CHC systems is ignored
x State explosion issue exists

Theory: Integer Arithmetics

ICE: A Robust Framework for Learning
Invariants, Garg et al., 2014

A Data-Driven CHC Solver, Zhu et al., 2018
(LinearArbitrary)

“Data-driven approaches”

9

https://link.springer.com/chapter/10.1007/978-3-319-08867-9_5
https://link.springer.com/chapter/10.1007/978-3-319-08867-9_5
https://herowanzhu.github.io/pldi2018.pdf

Motivation
● Black-box approaches is sample inefficient
● White-box methods is 1) difficult to deal with data samples

 2) hard to do inductive generalization

Theory: Integer Arithmetics

● Need many samples to “relearn”
● Each learning iteration gives only 1

additional sample
● Might have infinite interpretations for a

set of positive and negative samples

10

Motivation
Can we find a way to finding global patterns of CHCs without the resort to any
hand-crafted heuristics?

Can we make the data-driven methods more sample efficient?

Can we present symbolic and data-driven methods in a unified framework?

11

Desideratum: green solid line

Contributions
- Identify and formulate the key concepts in CHC solving: samples, zones,

counterexample, and etc. Their connection is also discussed.

- Enable synergistic working for symbolic methods and learning-based methods

- Here we don’t assume any specific algorithm for learner and reasoner

- Design a modular framework, Chronosymbolic Learning to realize the desiderata

- Naming: Synchronous, CHC, symbolic, no. (number)

- Propose a minimal instance, showing how components interact in our framework

- Provide artifacts for the minimal instance

- Give an evaluation of the instance and show the potential

12

Samples

For predicate p(x, y)
● Positive samples:

(2, 0), (2, 1), (3, 2), (5, 3), …

● Negative samples:

(2, 3), (0, 2), (-174732, 123), …

● Implication samples:

((2, 0), (2, 1)), ((-1, 0), (-1, 1)), …

Not necessarily samples that appears in program
But should depict the “semantics” of the loop

13

(Forward) Reachable
program configurations

Program configurations
that is unsafe (backward
reachable starting from
the unsafe condition)

(Inspired by and generalized from program verification)

rules

query

Zones

For predicate p(x, y)

● Example of a safe zone: {x > 1 ∧ y = 0}

● Example of an unsafe zone: {x < y}

(Or any zones that can be implied by current

zones, conceptually)

14

Zones can be symbolically represented:

● Zone is a set of samples; samples are zones (with cardinality of 1)

● Sometimes itʼs easy to know some zones (Lemma 7,8)

Some immediate useful lemmas
● Connection of solutions and samples

● Valid zones can directly extracted from the fact and query

15

A valid solution interpretation should separate any positive and negative samples.

Why we need Zones?

1. Integrated into the learner’s hypothesis to enhance it (Lemma 2)

Add S: to the hypothesis, and the new data samples will never be in

2. Provide the learner with additional samples (Sampling)

Sample from S: to get positive samples like (2, 0), (100, 0), …

3. Simplify the UNSAT checking of the CHC system

16

We assume there is a solution interpretation and make hypotheses, until there is a conflict

Lemma 5 (sample-sample conflict): samples cannot be both positive and negative

Lemma 6 (sample-zone conflict): a positive sample cannot be in unsafe zones

Lemma 11: safe and unsafe zones cannot overlap

Solution space of a CHC system

The universes of safe and unsafe zones are disjoint

Zones ensure more efficient “data coverage” of Us and Uu than samples

17

Safe
Zone

Counterexamples

18

● A situation that current interpretation fails

● Formulate the information the teacher provides to the learner

● Can be converted into positive / negative samples (Lemma 3,4)

● The information can potentially extended to zonal representation

For CHC (2) and p(x, y) ≡ x = y + 2:

● Example of a counterexample: (((2,0)), (2,1))

● It makes CHC (2)

● SMTModel(¬(CHC (2) ∧ p(x, y) ≡ x = y + 2))

Chronosymbolic Learning

19

In each iteration:
- The reasoner and learner propose new zones and

partition based on current zones and samples
- Make a hypothesis based on them
- The teacher checks the satisfiability for one certain

interpreted CHC
- If SAT, switch to another CHC
- If not SAT, return a counterexample, convert it into

data samples
- Do UNSAT checking for CHC system (Lemma 5, 6,

11) using samples and zones
- Sample data from zones
- If all CHC is SAT, we find the solution interpretation

Instantiations of Chronosymbolic Learning
● Previous methods can be seen as special instances of our framework

● (6): Better state-space coverage and more efficient UNSAT checking (Lemma 2)

● For some instances, w/o S/U (4, 5) is better
○ Can be seen as different exploration strategies

20

Our instance of Chronosymbolic Learning
- A data-driven learner (L) + a BMC-styled reasoner (S, U)
- makeHypothesis() is done by:

- Chronosymbolic-single: Always using (6)
- Chronosymbolic-cover: alternates from (2, 3, 4, 5, 6) using some scheduling heuristics
- Ablation study: Always using (2, 3, 4, 5)

21

Learner
- Collect the counterexample and convert them to positive and negative samples
- The learner contains a dataset and a machine learning toolchain (SVM+DT)

- SVM (learn arbitrary hyperplanes) + Decision Tree (tune and recombine those hyperplanes)

- Refer to our paper for further details

22

A Data-Driven CHC Solver, Zhu et al., 2018
(LinearArbitrary)

https://link.springer.com/chapter/10.1007/978-3-319-08867-9_5
https://herowanzhu.github.io/pldi2018.pdf

Reasoner

- BMC-styled image/pre-image computation

Append a transition to the current zone to expand the zone

23

Major experiment settings

- 288 arithmetic instances collected by FreqHorn, including non-linear ones

- Timeout: 360s (but we also care about efficiency within this period)

- Chronosymbolic-single: one configuration (hyperparameter set and strategy)

for all instances (Meta-Learning-liked)

- Chronosymbolic-cover: all solved instances in 13 configurations (like

LinearArbitrary which sets specific hyperparameters for different instances)

24

Experiment

● Efficient in arithmetic benchmarks

● Meet challenges in benchmarks with many Bool vars

● On our main dataset, the average time for SVM, DT, the teacher

and reasoner are 26.68s, 4.74s, 14.58s,1.29s respectively

25

Experiment

Below the diagonal: ours > baseline

26

(seconds)

Ablation

Parallel: learner and reasoner running individually and simultaneously for 360s
27

(4)
(5)
(3)
(2)

Future work and discussion
- Better Learner:

- Some better symbolic classifier that can deal with zones and samples simultaneously
- Better handling a large number of Boolean variables
- Embracing the LLMs as symbolic classifiers

- Better Reasoner:
- Go beyond BMC; e.g., model-based projection
- Add support for approximated zones (IC3/PDR),
- Zones induced from samples (symbolic regression)
- Better procedure to simplify complicated zones
- Currently reasoner can benefit from the learner, but learner’s impact on reasoner is small

- Better Teacher:
- Can produce zonal feedback / counterexample

- Better support for NL CHCs
- Beyond Integer Arithmetics

28

Thank you for your careful listening!

● Code is available here:
https://github.com/Chronosymbolic/Chronosymbolic-Learning, with examples
on how it works, and the detailed experimental results

● Slides can be downloaded from my personal website https://zyluo.netlify.app/
● Email me (ziyan.luo@mail.mcgill.ca) or Xujie (six@cs.toronto.edu) for further

questions or comments

29

Paper: Code:

https://github.com/Chronosymbolic/Chronosymbolic-Learning
https://zyluo.netlify.app/
mailto:ziyan.luo@mail.mcgill.ca
mailto:six@cs.toronto.edu

