
ar
X

iv
:2

50
6.

14
04

5v
1

 [
cs

.A
I]

 1
6

Ju
n

20
25

Discovering Temporal Structure:
An Overview of Hierarchical Reinforcement Learning

Martin Klissarov∗ martin.klissarov@mail.mcgill.ca
Mila, McGill University

Akhil Bagaria∗† akhilbg@amazon.com
Amazon

Ziyan “Ray” Luo ziyan.luo@mail.mcgill.ca
Mila, McGill University

George Konidaris gdk@cs.brown.edu
Brown University

Doina Precup‡ dprecup@cs.mcgill.ca
Mila, McGill University
Canada CIFAR AI Chair

Marlos C. Machado‡ machado@ualberta.ca

Amii, University of Alberta

Canada CIFAR AI Chair

Abstract

Developing agents capable of exploring, planning and learning in complex open-ended
environments is a grand challenge in artificial intelligence (AI). Hierarchical reinforcement
learning (HRL) offers a promising solution to this challenge by discovering and exploiting
the temporal structure within a stream of experience. The strong appeal of the HRL
framework has led to a rich and diverse body of literature attempting to discover a useful
structure. However, it is still not clear how one might define what constitutes good structure
in the first place, or the kind of problems in which identifying it may be helpful. This work
aims to identify the benefits of HRL from the perspective of the fundamental challenges in
decision-making, as well as highlight its impact on the performance trade-offs of AI agents.
Through these benefits, we then cover the families of methods that discover temporal
structure in HRL, ranging from learning directly from online experience to offline datasets,
to leveraging large language models (LLMs). Finally, we highlight the challenges of temporal
structure discovery and the domains that are particularly well-suited for such endeavours.

1. Introduction

Reinforcement learning (RL) is a general computational framework for building agents that
learn to maximize a scalar reward from their experience. RL agents sense their environment
and produce actions at every single timestep, yet effective reward maximization in complex
environments requires reasoning and learning over many timescales, spanning vast horizons.
Consider how we typically go about our day: as we actuate muscles every few milliseconds,

∗. Equal contribution.
†. Work done while at Brown University.
‡. Equal supervision.

https://arxiv.org/abs/2506.14045v1

Discovery from
 Online Experience

Discovery with
 Foundation Models

Discovery through
Offline Datasets

WorldAgent WorldAgentDatasetAgent

LLM

Figure 1: Overview of the methods for temporal structure discovery. We focus on
the problem of discovering temporal structure autonomously from data. We put the discovery
problem in perspective of the overall agent, covering the major benefits of Hierarchical
Reinforcement Learning as well as the associated challenges and trade-offs.

we simultaneously perform high-level decisions such as choosing presents for a loved one,
deciding what to eat for lunch, figuring out meaningful scientific questions, and so on. Such
abstract decision-making allows us to make decisions in a complex world, without being
overwhelmed with unnecessary detail.

Hierarchical reinforcement learning (HRL) formalizes the idea of flexibly reasoning over
different timescales by developing agents that learn, predict, and act in the world at multiple
levels of abstraction. At its core, HRL builds on the temporal structure revealed through
interaction with an environment. These can be leveraged either within a learning algorithm,
for example, as a curriculum over goals, or by defining a set of useful and reusable skills.
When the temporal structure is defined by human specialists, HRL can dramatically ease
the decision-making burden of the agent by improving exploration (Bellemare et al., 2020),
learning (Vinyals et al., 2019), and generalization (Ahn et al., 2022). On the other hand,
when the temporal structure underpinning HRL is poorly defined, it can hamper learning—
for example, resulting in pathologically bad exploration (Jong et al., 2008). These appeals
and drawbacks naturally lead to the question: how can agents autonomously discover useful
temporal structures in HRL?

Before designing algorithms that successfully address the discovery problem, we are faced
with the question of what constitutes a “good” temporal structure in the first place. Is
there one type of “good” structure that yields higher rewards in all possible environments?
Are there specific types of problem settings, like multi-task learning (Plappert et al., 2018)
and continual learning (Khetarpal et al., 2020c), where we expect HRL to outperform non-
hierarchical RL, and others where we do not? How can prior knowledge, for instance, through
the integration of large language models (LLMs), alleviate the difficulties of discovery? This
work presents various perspectives on what constitutes “good” temporal structures through
the lens of the fundamental problems of RL—specifically, how HRL can aid exploration,
credit assignment, transfer, and interpretability.

Key Contributions. The discovery of useful temporal structures has been a prolific,
albeit challenging, topic of research. Before we present the various algorithms that tackle
this problem, we take a step back and discuss the potential benefits of HRL methods as

2

Discovering Temporal Structure: An Overview of Hierarchical RL

well as their trade-offs in the context of sequential decision-making. It is through the
lens of these benefits and trade-offs that we introduce the diverse approaches that have
been developed to tackle the fundamental question of discovery. While recent surveys in
HRL (Pateria et al., 2021; Hutsebaut-Buysse et al., 2022) present papers based on their
technical differences and domains of application, we present the literature based on how
each method contributes to these core benefits. We then discuss the challenges associated
with discovering structure in HRL and the domains that are particularly well-suited for
such methods.

Scope. Almost all of the algorithms we cover are compatible with deep neural networks.
We categorize approaches in terms of the amount of prior knowledge, presenting works that
(1) learn directly from the agent’s online experience, (2) leverage offline datasets through
offline RL, and (3) build on foundation models such as LLMs to define policies and rewards.

Overview. Section 2 discusses the benefits of the HRL framework and the different trade-
offs faced when discovering temporal structure. Section 3 introduces the notation and
fundamental concepts used throughout the paper. In Section 4, 5, and 6, we present methods
that try to answer the central question in HRL: how can agents effectively discover temporal
structure in a stream of data? These sections are divided into methods that learn directly
from interaction, methods that leverage offline datasets, and more recent methods that build
on foundation models. In Section 7, we present approaches that investigate how an agent
might deliberate over the skills it has mastered to achieve different goals. In Section 8, we
discuss the challenges of discovering temporal structure through HRL. In Section 9, we
explore additional related fields to HRL and how they are interconnected, such as research
on state and action abstractions, continual RL, and programmatic RL. Finally, in Section 10,
we highlight environments and domains that are particularly promising for HRL research,
with a particular focus on open-ended systems.

2. What is Hierarchical Reinforcement Learning for?

Hierarchical reinforcement learning (HRL) aims to exploit the temporal structure of
sequential decision-making problems. Solutions to complex problems can often be approx-
imated by deconstructing the problem into simpler sub-problems that are modular and
composable. Modularity refers to the property that a solution to a subproblem can be
reused without concern for exactly how it was solved. Compositionality means that
sub-problems can subsequently be recombined to create solutions to a wide range of more
complex problems.

To better understand what such a structure might represent in practice, consider a
programmer with an abundance of time who cares about solving only a single task. In such
a scenario, Assembly language might be the optimal choice because its precise control over
hardware resources potentially maximizes memory efficiency and minimizes execution time.
However, in practice, programmers often opt for higher-level programming languages and
use external software libraries because they offer compositional modules that solve common
programming subtasks, and therefore make the writing of most new programs more efficient,
at the cost of increasing execution time. In fact, such programming languages allow us to
quickly solve complex problems; without them, most large software projects would simply be

3

Graphical User
Interface

High-level
Languages

Assembly
Language

Machine
Language

for epoch in range(EPOCHS):
 # Make sure gradient tracking is on
 model.train(True)
 avg_loss = train_one_epoch(epoch_number, writer)

 running_vloss = 0.0
 # Set the model to evaluation mode, disabling dropout
 # and using population statistics for batch normalization.
 model.eval()

def train_one_epoch(epoch_index, tb_writer):
 # Make predictions for this batch
 outputs = model(inputs)

 # Compute the loss and its gradients
 loss = loss_fn(outputs, labels)
 loss.backward()

 def forward(self, x):
 x = self.pool(F.relu(self.conv1(x)))
 x = self.pool(F.relu(self.conv2(x)))
 x = x.view(-1, 16 * 4 * 4)
 x = F.relu(self.fc1(x))
 x = F.relu(self.fc2(x))
 return x

 def backward(self, *gradients)
 # Shared backward utility.
 nested_gradients = _unflatten(gradients, self._nested_output)
 result = self.backward_extended(*nested_gradients)
 return tuple(_iter_None_tensors(result))

 mul.wide.u32 %addr_in, %index, 4; // Assuming 4-byte elements
 add.u64 %addr_in, %addr_in, ptr_in;

 ld.global.u32 %value, [%addr_in];
 mul.wide.u32 %shared_index, %tid.x, 4; // Index into shared memory

Modularity
&

Compositionality

Figure 2: (Left) The hierarchy of software and languages which make computers especially
useful, allowing humans to directly interact with a user interface or a high-level language to
achieve a diversity of goals. (Right) a code snippet, revealing the usefulness of modular and
compositional software structures that researchers use every day. The PyTorch language,
which abstracts over the PTX language used within CUDA kernels, allows exploring research
ideas efficiently.

infeasible. This idea is visually represented in Figure 2 on the left, where abstract interfaces
allow us to manipulate machine language efficiently. Modularity and compositionality are
also particularly appealing properties for software expected to undergo changes throughout
its life cycle. In a software library, each function typically handles a specific subtask and
can be composed within a sequence of function calls to achieve a larger objective. In some
more complex tasks, functions might call other functions. Developing such a library requires
careful consideration of the right code organization to adopt and which guiding principles to
follow, balancing execution time, readability, and performance. However, once a library is
written, the user can focus on the overall program’s behaviour without needing to understand
the implementation details of each function (Wilkes et al., 1958), greatly empowering the
user’s ability to achieve their goals. This is represented in Figure 2 on the right, where
the modular and compositional nature of PyTorch allows researchers to efficiently explore
research ideas.

The temporal structure at the core of HRL is analogous to functions and subroutines in
programming languages.1 Just as a human programmer writing a complex program is faced
with the difficulty of breaking their task into subtasks, so must RL agents autonomously
identify hierarchical structure in a stream of data. The modularity and compositionality
properties are therefore good indicators as to the kind of problems in which we might
find HRL particularly useful (see Section 10). We now discuss how, by discovering and
leveraging such temporal structure, HRL methods can help address fundamental challenges
in decision-making.

1. We provide more details about this analogy in Section 9.3.

4

Discovering Temporal Structure: An Overview of Hierarchical RL

2.1 The Benefits of Hierarchical Reinforcement Learning

Just as modular and compositional codebases can facilitate effective software development of
complex systems, HRL can leverage an environment’s structure to improve decision-making.
This is particularly powerful when an agent is faced with tasks spanning vast horizons. By
breaking down such long horizons into manageable subgoals, HRL effectively affords learn-
ability. How can we understand this more precisely? In this section we attempt to provide
a comprehensive perspective on the benefits of HRL through the lens of three fundamental
challenges agents face when learning from interaction: how to select the right data to collect
(exploration), how to efficiently learn from this data (credit assignment), and how to transfer
knowledge and behaviour to new situations (transferability). Additionally, as agents become
increasingly more capable, a new challenge emerges: understanding their decision-making
processes (interpretability). When covering the different families of HRL methods (Sections
4, 5, and 6), we will explicitly consider how these benefits are instantiated in practice.

Exploration. Broadly speaking, RL agents must solve two problems: (a) how to use
existing data to learn useful behaviours, and (b) what data to collect in the first place. The
latter problem, known as the exploration problem, is both unique and central to RL; the
agent must learn how to collect data that improves its understanding of the world even
if doing so does not immediately maximize reward in the short term (Amin et al., 2021).
By exploiting the temporal structure of an environment, an agent can improve exploration
in at least three ways. First, it can seek subgoals that are closer and more achievable
than the overarching task’s goal, potentially creating a progressive curriculum of subgoals
that allows the agent to explore more effectively. Second, it can explore in a diversity of
directions, each defined by a skill in the agent’s skill set. Finally, agents can explore at a
higher level of abstraction than individual actions, enabling them to search the solution
space more efficiently. Consider a researcher tackling an important scientific question. By
learning a high-level programming language, such as PyTorch, and writing modular code,
the researcher can iterate faster to investigate many high-level ideas. When iterating over
ideas, the researcher may seek to achieve some important milestones, such as a proof of
concept, that can reveal new perspectives and provide insights into possible future courses
of action.

Credit Assignment. To improve its decisions over time, an agent must identify the
key moments in a sequence of decisions that best explain the observed result. RL algorithms
typically leverage multi-step error propagation (Sutton, 1988) to learn about temporally
distant, or delayed, outcomes. An agent leveraging the environment’s temporal structure
could more efficiently identify the origins of an outcome by propagating errors at the
abstraction level defined by this structure. Consider our previous example of a researcher
performing a scientific experiment. Completing such an experiment consists of a sequence of
high-level decisions, such as the choices of data preprocessing or evaluation metrics. Each of
these high-level decisions is instantiated through a series of keystrokes that make up the final
working code. By reflecting on the validity of the sequence of high-level decisions, rather than
of each individual keystroke, the researcher could better identify which ones were critical
for the observed outcome and how this sequence could be improved. By breaking down a
task into such segments, it is also easier to identify if a particular segment is completed,

5

narrowing down the search for lower-level mistakes, such as where an errant keystroke might
have introduced a bug.

Transfer. HRL offers a particularly promising way of exploiting structure shared
between a family of problems: skills acquired in one task can seamlessly be transferred to
another. Agents could achieve this by breaking a complex task into simpler subtasks that
have the potential to recur in many contexts and then learn skills that achieve such subtasks.
Faced with a new challenge, such an agent can re-compose the skills, either by sequencing
them or acting according to a mixture of them efficiently. Consider our previous example of
an AI researcher conducting experiments and writing a paper for a particular conference.
The collection of research code subroutines and writing skills learned while writing this
initial paper could substantially reduce the complexity of writing a follow-up article, further
improving their ability to conduct impactful research. A set of skills can also serve as a
foundation for learning increasingly more complex ones, as a form of auto-curriculum.

By addressing the three aforementioned fundamental challenges, HRL aims to achieve
faster learning and planning, ultimately improving the agent’s problem-solving capabilities.
Beyond these, HRL also has the potential to tackle the additional challenge of interpretability.

Interpretability. While not all HRL algorithms produce interpretable behaviour, those
that do offer the unique advantage of allowing human observers to better understand an
agent’s decision-making process. As such, agents become increasingly powerful; they will
eventually be deployed in real-world situations where the consequences of their actions
carry considerable stakes. A crucial requirement would then be our capacity to ensure their
alignment, and interpreting their decisions is a key aspect of this challenge (Amodei et al.,
2016). HRL could provide an interpretable interface for AI alignment via a more abstract
decision formulation than the one defined in the environment. For instance, in a robot
navigation task, low-level actions such as the forces applied at the joints are particularly
hard to interpret compared to a sequence of semantically meaningful skills such as “reach
the stairs” and “descend to the first floor”. Humans may be able to follow the agent’s
reasoning at that level of abstraction, and provide feedback as to the type of goals that are
to be preferred.

2.2 Trade-offs

HRL builds on the inductive bias that tasks can be naturally decomposed into simpler,
modular, and compositional subtasks, making it especially effective when such a hierarchical
structure is apparent. However, while it offers several potential advantages, consistent with
the No Free Lunch Theorem (Wolpert and Macready, 1997), HRL is not guaranteed to
outperform non-hierarchical RL methods across all tasks. Its bias may lead to suboptimal
outcomes when the assumed structure does not match the problem’s underlying one. In
other words, a poorly chosen task decomposition can sometimes make a problem harder,
not easier. Taking the analogy of programming, adding abstractions in a codebase can
simultaneously help in seeing a broader picture, but also obscure the important details
(Victor, 2011). As a result, for any task or environment, HRL agents face a trade-off between
performance, sample efficiency, and computation efficiency, as illustrated in Figure 3.

We first consider the trade-off between performance and sample efficiency. This trade-off
can be appreciated from a theoretical point of view: under standard assumptions, the optimal

6

Discovering Temporal Structure: An Overview of Hierarchical RL

Figure 3: (Left) Agents trade-off between three different objectives: performance (in terms
of reward), sample efficiency (the amount of data required to reach a certain performance),
and computational efficiency (amount of computation needed to do so). The Pareto frontier
between performance and sample efficiency shifts with different compute budgets. For
instance, with unlimited compute (a low computational efficiency), high performance can be
achieved at moderate sample efficiency. (Right) A qualitative illustration of a “flat” agent
and a hierarchical agent under the Pareto frontier of the performance vs. sample efficiency
trade-off, given a fixed compute budget. A “flat” agent, as opposed to a hierarchical one,
does not use temporally extended actions. While it is not always the case, hierarchical
agents tend to trade some amount of performance for improved sample efficiency.

policy can always be represented using primitive actions alone (Bertsekas, 1995). However,
learning the optimal policy for large and realistic environments is often simply intractable.
Rather than pursuing perfect solutions, an agent should embrace efficient learning algorithms
to develop reasonable but often suboptimal policies. This is one of the main appeals of
HRL: by re-composing existing solutions (i.e., behaviours achieving particular subtasks), an
agent may be able to quickly find approximate solutions for a variety of tasks, offering a
promising way to trade off optimality with sample efficiency. For example, a pre-trained
skill that opens doors allows an agent to bypass learning the complex motor controls for
that specific action. However, this very abstraction can be limiting; if a door is stuck and
requires an unusual push-and-jiggle motion, the rigid pre-defined skill might fail, preventing
the agent from solving an edge case that a more flexible, low-level policy could have.

Another important challenge faced by agents interacting with complex and realistic
environments is computational efficiency: the amount of computation spent selecting the
right action at each timestep. Such computation can correspond to the neural network size,
the maximum depth allowed for an agent using Monte Carlo Tree Search (Coulom, 2006), or
the length of the reasoning trace of an LLM. Suppose the computation time is unrestricted,
e.g., for agents acting in a simulator with the liberty of performing thousands of imagined
rollouts for each timestep. In such a case, large amounts of computation can be spent on
planning the next action. However, in real-world scenarios, the compute time per timestep
is constrained. As HRL agents make decisions at a high level of abstraction, computation
time can be managed more flexibly. For example, a robotic agent equipped with an LLM

7

may plan over a set of semantically meaningful skills, which is significantly smaller than the
underlying continuous action space. Since each high-level decision made by such an agent
typically takes place over multiple timesteps, the cost of deliberating is naturally amortized
over such timescales.

On the Importance of Knowledge Reuse. A common pitfall in HRL applications is
that the number of interactions required to discover the hierarchical structure of a problem
can be greater than the number of interactions needed to solve the problem itself, highlighting
the importance of carefully considering the types of problem for which HRL is used (see
Section 10). This cost can be amortized in different ways. For example, it may be offset
if the agent is expected to complete many different tasks within its lifetime, allowing the
learned subtasks to be potentially reused. Alternatively, reusing existing knowledge—such as
offline datasets (Section 5) and foundation models (Section 6)—can also help mitigate
this cost. As we will see, HRL’s formalism offers a natural and particularly promising way
to incorporate such prior knowledge.

3. Formalizing Hierarchical Reinforcement Learning

We use the notation introduced by Sutton and Barto (2018): capital letters refer to random
variables, whereas lowercase letters refer to their instantiation. Table 2 summarizes the
notation used in this section.

3.1 Reinforcement Learning

We consider an agent interacting with an environment where the agent is in state St ∈ S at
timestep t, selects an action At ∈ A, and in response the environment emits a scalar reward
Rt+1 ∈ R and transitions to a new state, St+1 ∈ S. This transition happens according to a
transition probability distribution,

p(s′|s, a) = p(St+1 = s′|St = s,At = a). (1)

The agent’s goal is to find a policy π : S→ ∆(A), where ∆(A) is the distribution over
A, that maximizes the expected discounted sum of rewards (return):

Gt = Eπ

[∞∑
i=t

γi−tRi+1

]
, (2)

where γ ∈ [0, 1) is the discount factor. This 5-tuple, ⟨S,A, R, p, γ⟩ defines a Markov Decision
Process (MDP) (Puterman, 1994), the most commonly accepted formalism in RL.

When following a particular policy π, the value of each state can be represented by the
state value function,

vπ(s) = Eπ [Gt|St = s] . (3)

Similarly, we may consider the value of being in state s and taking action a, following policy
π afterward, represented by the action value function, or q-function,

qπ(s, a) = Eπ [Gt|St = s,At = a] . (4)

8

Discovering Temporal Structure: An Overview of Hierarchical RL

This function can be written recursively,

qπ(s, a) = E[rt+1 + γrt+2 + γ2rt+3 + · · · | St = s, at = a, π]

= r(s, a) + γ
∑
s′

p(s′|s, a)vπ(s′)

= r(s, a) + γ
∑
s′

p(s′|s, a)
∑
a′

π(s′, a′)qπ(s′, a′). (5)

A similar derivation is possible for the value function, and this set of equations is referred to
as the Bellman equations for evaluation (Bellman, 1957).

The goal of an RL agent is to maximize the rewards it gets from interacting with the
environment. In an MDP, there exists at least one optimal policy, defined as,

π∗ = arg max
π

qπ(s, a). (6)

In most settings, this quantity is impractical to compute exactly, and we must resort to
approximation. Such approximations stem from two families of algorithms for learning
reward-maximizing policies. The first family of methods, called value-based methods, greedily
maximizes an estimated action-value function. Q-Learning (Watkins and Dayan, 1992) is
likely the most used algorithm to estimate the optimal policy, π∗, whose update rule takes
the following form,

Q(St, At)← Q(St, At) + α

[
Rt+1 + γmax

a∈A
Q(St+1, a)−Q(St, At)

]
. (7)

This update has been the basis of the Deep Q-Networks algorithm (Mnih et al., 2015).
The second family of methods directly maximizes the quantity of interest, that is, the

discounted sum of returns. The policy gradient theorem (Sutton et al., 1999a) provides the
gradient of the expected discounted return from an initial state distribution, d(s0), with
respect to a stochastic policy, πζ(·|s), parameterized by ζ,

∂J(ζ)

∂ζ
=

∑
s

dγπ(s)
∑
a

∂πζ (a|s)
∂ζ

qπ(s, a), (8)

where dγπ(s) =
∑

s0
d(s0)

∑∞
t=0 γ

t
∑

a Pπ(St = s|S0 = s0) is the discounted state occupancy
measure, and Pπ(St = s|S0 = s0) the probability of reaching state s from s0 in t steps when
following policy π. This update has been the basis of many modern algorithms, including
the well-known proximal policy optimization (Schulman et al., 2017).

3.2 Hierarchical Reinforcement Learning

The temporal structure an agent learns using HRL has been formalized in a variety of names,
such as skills, options, temporal abstractions, or goal-conditioned policies, amongst
others. These frameworks carry their own notations and focus on particular methodologies
or research questions. We adopt the options formalism (Sutton et al., 1999b; Precup and
Sutton, 2000) as it provides a useful and comprehensive framework for expressing temporal
structure. In Section 3.2.2, we expand on how alternative formalisms are fundamentally
connected by focusing on what constitutes HRL at its core.

9

3.2.1 Options: A Mathematical Formalism

An HRL agent makes use of a set of options, O, which are defined by three components:
a policy, an initiation function, and a termination function. These components can be
implemented through parameterized functions, such as neural networks, or symbolically
through code (e.g., see Section 6). In Figure 4, we illustrate the temporal structure exhibited
by options while interacting with an environment. More formally,

• π : S×O→ ∆(A) is an option policy, which selects an action according to the current
state and the current option.2 This quantity can also be referred to as the skill’s policy,
the intra-option policy, or the goal-conditioned policy (see Section 3.2.2). When this
function is parameterized by a set of weights θ, we will write πθ(a|s, o).

• β : S × O → [0, 1] is the option termination function, giving the probability with
which option o should stop executing if it reaches state s. When this function is
parameterized, we will use the notation βψ(s, o), where ψ represents the termination
function parameters.

• I : S×O→ [0, 1] is the option initiation function, which determines to what degree an
option o can start its execution from a certain state. Traditionally, this component is
referred to as the initiation set, which determines the set of states in which an option
can initiate. When this component is parameterized, we will use the notation Iχ(s, o),
where χ represents the initiation function parameters.

Additionally, to select among the set of options, an HRL agent uses:

• µ : S → ∆(O ∪ A), the high-level policy, which outputs a probability distribution
over the set of options O and actions A given a state s. When this probability is
parameterized, we will use the notation µκ(o|s), where κ represents the high-level
policy parameters. Similarly to the previous components, in practice, this policy can
also be instantiated by other means, e.g., a programmatic policy that directly encodes
domain knowledge or follows predefined rules (see Section 9.3).

When planning with options, an HRL agent will do so through:

• PO : S× O× S→ R, the option model function. This function takes as input a state
s, an option o, a future state s′, and the discount factor γ, and outputs a measure of
how likely the option o will terminate at state s′, at any point in the future.

Not all of the papers covered in this work will explicitly define each of these components.
It is common for research in HRL to only highlight the components for which a significant
contribution is made and to make assumptions about the other components. For instance,
the termination function is often assumed to output termination after a fixed number of
timesteps. Similarly, the option initiation function is often assumed to allow option initiation
across the whole state space. We will highlight the relevant aspects within the presentation
of each work.

2. We slightly abuse the notation here with respect to the symbol representing the policy of a non-hierarchical
RL agent. The distinction between the two will be clear through context.

10

Discovering Temporal Structure: An Overview of Hierarchical RL

Figure 4: A simplified diagram illustrating the decision process of a hierarchical agent: large
white nodes signify high-level decisions made over options, and large grey nodes represent
the state observed by the agent at that moment. The high-level decisions can be made
over a potentially infinite set of options, such as when option policies are represented as
goal-conditioned policies. Grey trails represent state transitions during option execution.
This diagram illustrates how different options last for different timescales and traverse the
environment in a diversity of directions. After an option finishes execution, the agent must
make its next high-level decision.

Using the presented terms, we can now define the option value function,

qπ(s, o) =
∑
a

π(a | s, o)qu(s, o, a), (9)

where qu : S× O×A→ R is the value of executing action a in the context of a state-option
pair:

qu(s, o, a) = r(s, a) + γ
∑
s′

p(s′ | s, a)uβ(o, s′). (10)

The function uβ : O× S→ R is called the option-value function upon arrival, that is, the
value of executing option o upon entering a state s′ is given by:

uβ(o, s′) = (1− β(s′, o))qπ(s′, o) + β(s′, o)vµ(s′). (11)

Finally, the function vµ : S→ R is defined as the value function over a set of options

vµ(s) =
∑
o

µ(o|s)qπ(s, o). (12)

Subgoal Options. Technically, an option is simply described by a way of initiating, a
way of acting, and a way of terminating—its behaviour need not maximize any objective at
all. As an example, consider an option that initiates everywhere, terminates nowhere, and
whose policy arbitrarily maps each state to an action; this is a well-defined option but does

11

not optimize any useful objective. However, for option discovery, rather than searching for
these three quantities in their raw form, it is often more convenient to think of options as
achieving subgoals. In fact, the vast majority of the literature on option discovery can be
seen as achieving subgoals (e.g., McGovern and Barto, 2001; Precup, 2001; Colas et al.,
2022; Sutton et al., 2023); we refer to these options as subgoal options (Bagaria, 2025). One
way to learn options that achieve subgoals is through the following:

• ro : S×A× S→ R, the option reward function is a function conditioned on an option
o. We also refer to this quantity as the goal reward function. It takes as input a state
s, an action a, and a next state s′, and outputs a scalar reward. When maximized, it
would produce the corresponding option policy. When parametrized, this function will
use parameter notation ν.

It is important to note that not all subgoal options need to maximize option reward functions.
Indeed, some approaches learn a set of useful behaviours through imitation learning (e.g.,
Le et al., 2018; Team et al., 2024). Alternatively, subgoal options can be defined by mapping
states to actions through symbolic functions such as code (see Sections 6 and 9.3). It is
also possible these quantities take a slightly different set of inputs, for example, the option
reward function may only receive as input the current state s, written as ro(s).

3.2.2 Related Terminologies and Formalisms

The previous section uses the language of options to formalize the learned temporal structure.
As the field of HRL is rich and diverse, some researchers may feel misrepresented by such a
formalism. Therefore, throughout the paper, we may interchangeably refer to options (with
the notation o for each option) as skills (with the notation z for each skill), goal-conditioned
policies (with the notation g for each goal), or simply refer to the general term of temporal
abstractions. We believe such differences in language are mostly superficial and may hinder
the integration of the best practices from each of these fields. We now highlight the differences
among various related formalisms and illustrate their connections.

Skills. The skill terminology has largely been used informally in the HRL literature to
refer to temporally extended behaviours. Skills can most commonly be formalized using the
options framework, but they can also be formalized using other formalisms such as macro-
actions (Fikes and Nilsson, 1971), feudal hierarchies (Dayan and Hinton, 1993), MAXQ
(Dietterich et al., 1998), and HAMs (Parr and Russell, 1997).

Goal-conditioned RL. A goal can be formally defined using a triple: (g, rg, γg), where
g : S→ Rd is a goal vector that can, for example, be used to condition a policy, π(a|s, g),
or a value function, v(s|g), rg : S → R, is a goal reward function that maps each state to
real-valued number, and, finally, γg : S × A × S → [0, 1] describes the goal’s continuation
function, and hence the timescale for achieving that goal (Kaelbling, 1993a; Schaul et al.,
2015). Most work in goal-conditioned RL (GCRL) considers the state space to be the set of
goals an agent should reach (Andrychowicz et al., 2017). To obtain useful measures of the
distance between the current state and the goal state, a key emerging research question is
defining representations that afford meaningful distance measures. Although some of the
works from the GCRL literature are present in this work, we refer the reader to Liu et al.
(2022) for an in-depth review.

12

Discovering Temporal Structure: An Overview of Hierarchical RL

Feudal RL. In Feudal RL (Dayan and Hinton, 1993), decision-making is divided across
multiple levels of the hierarchy, where higher-level “managers” set subgoals for lower-level
“workers” who are rewarded by their managers for achieving these subgoals. The space
from which the manager draws subgoals is usually continuous, whereas options are usually
instantiated as a discrete set of policies. In the previous section, we intentionally refrained
from specifying the nature of the option set, accommodating both discrete and continuous sets.
The concept of a continuous option set can be interpreted through the lens of parameterized
skills (da Silva et al., 2012).

3.2.3 Beyond Architectural Choices

In the previous section, we mentioned that skills, options, and goal-conditioned policies were
slightly different instantiations of the same fundamental principle. We now attempt to clarify
this statement. In Figure 5, we depict a set of common instantiations of hierarchical architec-
tures. One such architecture is a modular architecture of hierarchical components: a high-level
policy is explicitly defined, together with a collection of options, each potentially implemented
through neural networks. Our previous statement makes it obvious that HRL is not restricted
to such a hierarchical architecture, despite the fact that it is quite common in the literature.

Hierarchical
Reinforcement Learning

Agent Architectures

Single
Network

Hierarchial
Components

Goal-
Conditioned

Feudal
Architecture

Exploration

Credit Assignment Transferability

Figure 5: The agent architecture is a sub-
problem to the main question posed in HRL:
how to discover temporal structure?

An alternative instantiation is the goal-
conditioned neural network, which can be in-
stantiated by an LLM (see Section 6). How-
ever, HRL is also not restricted to such an
architecture. In fact, we argue that HRL
is fundamentally defined through the
algorithm, not the agent architecture.
In the most general case, HRL can produce
agents that are simply instantiated by a sin-
gle, large neural network where the options
and goals are implicitly learned and defined
within the neurons themselves.

An HRL algorithm empowers the agent’s
exploration by selecting goals across time,
and rewarding the agent for achieving them.
It also facilitates more effective credit as-
signment by decomposing a long, continuous
stream of experience into meaningful sub-
tasks. Additionally, HRL can better prepare
an agent for future challenges by promoting
the learning of reusable behaviours, which can be explicitly or implicitly defined. These
essentially represent the core benefits of HRL, as outlined earlier in this work in Section 2.1.

4. Discovery from Online Experience

In this section, we present work in option discovery that takes place in the online setting:
the agent seeks to construct useful options by simply interacting with the environment. This
setting has received significant attention because it holds the promise of scalability (Sutton,

13

Table 1: A summary of HRL methods shown in Section 4, 5, and 6 that discover temporally
abstract behaviors, highlighting the main benefits elaborated in Section 2.1. Each
method links to the corresponding section. A single black dot (•) indicates that a class of
methods generally contributes to addressing a specific challenge, while a double black dot
(••) signifies that the class of methods is explicitly designed to tackle that challenge.

Categories Methods Reference
Focus of Methodologies on Different Benefits

Credit Assignment Exploration Transferability Interpretability

Discovery from
Online Experience

Bottleneck
Principle

4.1 • • • •

Spectral
Methods

4.2 • •• •

Skill
Chaining

4.3 •• •• • •

Empowerment
Maximization

4.4 • •• •

Via
Environmental Reward

4.5 •• • •

Directly Optimizing the
Benefits of HRL

4.6 • •

Meta-Learning 4.7 • ••

Curriculum Learning 4.8 •• •

Intrinsic Motivation 4.9 •• •

Discovery through
Offline Datasets

Variational
Inference

5.1 •• • •

Hindsight Sub-goal
Relabelling

5.2 •• •

Discovery with
Foundation

Models

Embedding
Similarity

6.1 •• • •

Providing
Feedback

6.2 • •• • •

Reward as
Code

6.3 •• •

Directly Modeling
the Policy

6.4 • •• •

2019)—a long-lived agent that can learn new, useful options simply via interaction and
can potentially keep increasing its competence in the world, bootstrapping new skills with
previously discovered ones (Ring, 1995; Schmidhuber, 2010).

We broadly categorize this literature based on the proxy objectives used for option discov-
ery. For each family of methods, we first describe the core intuition and key methodological
patterns. Then, we discuss how each category contributes to the core benefits of HRL (as
outlined in Section 2.1). Finally, we discuss some limitations of each category and highlight
opportunities for research.

Before presenting the methods in detail, we direct the reader’s attention to Table 1,
which provides an overview of all the discovery methods discussed in this work. For each
method, we highlight which benefits have been mostly studied by researchers from the
field, where a single black dot (•) indicates that a class of methods generally contributes

14

Discovering Temporal Structure: An Overview of Hierarchical RL

Four Rooms - Betweenness Centrality

0.05

0.10

0.15

0.20

0.25

Be
tw

ee
nn

es
s C

en
tra

lit
y

(a) Betweenness Centrality

Four Rooms Q-Cut
Source
Goal
Source Partition
Goal Partition
Cut Edge

(b) Q-Cut

Figure 6: Bottleneck Discovery in Four Rooms. Skill discovery using (a) betweenness
centrality, a measure of the likelihood that a state lies on the shortest path between any
two other states, and (b) Q-cuts, which finds the edge that solves the Min-Cut problem on
the transition graph. Both classes of methods attempt to identify bottleneck states and use
them as option subgoals.

to addressing a specific challenge, while a double black dot (••) signifies that the class of
methods is explicitly designed to tackle that challenge.

4.1 Bottleneck Discovery

Many challenging problems in RL have bottlenecks, which are small regions of states that
an agent must pass through to reach a larger, potentially more interesting region of the
state space. For example, in the Two Rooms task (Sutton et al., 1999b; Solway et al., 2014),
the agent must go through a doorway state to access the goal in the other room. Another
example is a player in a video game who must pick up a key to unlock a door that leads to
the other levels. In these examples, the doorway and the key act as bottlenecks—reaching
those states grants the agent access to an entirely new region of interesting states. When
an agent identifies such bottleneck states during learning, it defines a subgoal option (as
in Section 3.2.1) to reach it. Specifically, the option terminates with a positive subgoal
reward when it reaches the bottleneck state, and continues without termination or reward
otherwise. When bottleneck states are successfully identified and targeted with subgoal
options, the agent often improves exploration, credit assignment, and transfer, as we will
soon discuss. Given this intuitive appeal, several papers have proposed algorithms for
identifying bottlenecks.

Most algorithms for finding bottlenecks begin with a graph-based view of the MDP:
states are treated as nodes and an edge exists between two states, (s, s′), when the agent
can reach s′ from s in a single timestep:

G = (S, E), es,s′ ∈ E = 1
∑

a∈A p(s
′|s,a)>0. (13)

15

In this graph, bottlenecks have been described, and identified, using the following approaches:

Diverse Density

An early approach to option discovery used the concept of diverse density, which measures
how much more likely a state is to lie on a successful trajectory than an unsuccessful one.
McGovern and Barto (2001) formulate bottlenecks as states with highly diverse density and
propose a simple algorithm to identify them. Concretely, consider that the agent has a set
of successful trajectories, T +, (each is a sequence of states leading to a goal state) and a set
of unsuccessful trajectories, T −, (sequences that did not reach the goal state). The diverse
density score, DD(s), captures the probability that a given state, s, occurs in successful
trajectories and does not occur in unsuccessful trajectories:

DD(s) =
∏
τ∈T +

P (s ∈ τ)
∏
τ∈T −

(
1− P (s ∈ τ)

)
, (14)

where the probability that a state occurs in a trajectory can be computed in tabular domains
using visitation counts:

P (s ∈ τ) =
Number of times s appears in τ

|τ |
. (15)

States with a diverse density greater than a threshold are chosen as bottlenecks, and
subgoal options are created to reach them. A drawback is that trajectories must be classified
as positive or negative depending on whether they were on the path to a goal state. Stolle
and Precup (2002) address this shortcoming by defining diverse density over a family of tasks :
bottleneck states are those that are repeatedly visited while solving many goal-reaching tasks.

Graph partitioning

Under the graph view of MDPs, bottlenecks can be interpreted as “accumulation” nodes—
states in which many paths or trajectories coincide. These accumulation nodes, or bottleneck
states, tend to separate loosely connected sub-graphs, which are otherwise densely connected
among themselves. To see why bottlenecks separate loosely connected sub-graphs, Menache
et al. (2002) describe the problem of going from a start state, s, to a goal state, g, as a
Max-Flow problem (Ahuja et al., 1993): the agent should maximize the accumulation (or
flow) of probability along paths that originate in s and terminate in g. But, the problem of
maximizing the flow in a graph is equivalent to the Min-Cut problem (Ford and Fulkerson,
1962), which requires identifying the lowest probability edges that can be removed to
completely separate the source state, s, from the goal state, g. Off-the-shelf algorithms can
be used to identify these min-cuts, which are interpreted as bottleneck states, and used as a
target for new subgoal options (Kazemitabar and Beigy, 2009).

Specifically, the Q-Cut algorithm (Menache et al., 2002) finds such bottlenecks by solving
the Min-Cut problem. In Min-Cut, the nodes of the graph are divided into disjoint sets,
U and V (U ∪ V = S and U ∩ V = ∅), such that the source state belongs to the first set,
s ∈ U , and the goal state belongs to the second set, g ∈ V \U . The cut-value between them

16

Discovering Temporal Structure: An Overview of Hierarchical RL

is defined as the sum of probabilities along the edges that connect the two subsets:

Cut(U, V \ U) =
∑

(i,j)∈E:i∈U,j∈V \U

p(j|i, a). (16)

Additionally, the min-cut is the solution to the following optimization problem, which
searches for the edges that separate source s and goal g while minimizing the sum of
probabilities along the cut edges:

MinCut(G) = {(i, j) ∈ E : i ∈ U∗, j ∈ V \ U∗}, (17)

where U∗ = arg min
U⊂S

Cut(U, V \ U). (18)

Although there are exponentially many valid cuts, the Min-Cut problem can be solved
in polynomial time (Ford and Fulkerson, 1962). Finally Menache et al. (2002) define the
bottlenecks as the destination nodes of the min-cut edges: B = {j | (i, j) ∈ Min-Cut(G)}.

A drawback of Q-cut is that the entire MDP must be described with a global graph, which
is not scalable. To address this shortcoming, L-cut (Şimşek et al., 2005) constructs “local
graphs” using states visited in an episode. Instead of searching for individual states, Mannor
et al. (2004) suggest identifying clusters of states and then connecting them using options;
this approach has recently been extended using more sophisticated clustering techniques
(Metzen, 2012; Srinivas et al., 2016; Campos et al., 2020; Bacon, 2013). Notably, Evans
and Şimşek (2023)’s use of graph modularity (Newman and Girvan, 2004) as the metric for
clustering allows them to efficiently learn multi-level hierarchies, where each level operates
at a different timescale.

Graph Centrality

In graph theory, centrality measures the importance of each node within a graph. The
search for useful subgoals in an MDP can be viewed as being analogous to identifying central
nodes in a graph. Centrality measures are theoretically well-understood, and several efficient
algorithms exist for computing them in large graphs, so it is attractive to use these methods
for option discovery. Although many different graph centrality measures exist, Şimşek and
Barto (2008) advocate for betweenness centrality because of its ability to find bottlenecks in
large graphs. Betweenness quantifies how important a node is in a network by counting how
many times it appears on the shortest path between other nodes (Şimşek and Barto, 2008).
Specifically, the betweenness score b(v) for a vertex (or equivalently, a state) is given as:

b(v) =
∑
s ̸=t̸=v

σst(v)

σst
wst, (19)

where σst is the number of shortest paths from state s to state t, σst(v) is the number of
those paths that pass through state v, and wst is the weight assigned to paths from vertex s
to vertex t. The ratio in Equation 19 is the fraction of all-pairs shortest paths in the state
transition graph that go through vertex v. When wst is the same for all pairs of nodes,
then Equation 19 is the betweenness centrality measure on graphs. To tailor this centrality
measure to MDPs, wst is set to the expected reward while going from state s→ t.

17

4.1.1 Benefits and Opportunities

Having introduced the major approaches for identifying bottlenecks, we now discuss how
the resulting algorithms contribute to the aforementioned benefits of HRL.

Exploration. If an agent can easily reach the bottleneck states in an environment, it can
perform more effective exploration. This is because states that were once hard to reach
become more accessible, even under a random policy (these states are often referred to as
access states). For example, picking up a key makes it easy for the player of a video game to
visit previously unseen rooms. When this bottleneck discovery is done in an incremental
fashion, as in L-Cuts (Şimşek et al., 2005), the agent expands the frontier of its experiences
in the environment.

Credit Assignment. Methods like that of McGovern and Barto (2001), and Şimşek and
Barto (2008) require the agent to solve the problem several times before option discovery can
even begin; in such cases, exploration is clearly not the main benefit of discovering options.
However, once the agent identifies bottlenecks, it can perform rapid credit assignment. This
is primarily because of three reasons: (a) rather than progressing step-by-step, value can
propagate in large, multi-step “jumps” from the states in which option execution terminates
to the states from where it initiates (Sutton et al., 1999b), (b) value from rewarding events
only needs to propagate along trajectories that pass through the bottleneck, greatly reducing
the state-action pairs whose values need to be updated, and (c) in long-horizon problems,
the difference in value between different actions—the action-gap (Bellemare et al., 2016a)—
tends to approach zero (Lehnert et al., 2018), making it impossible to learn an accurate
action-value function; in such cases Lehnert et al. (2018) suggest partitioning the state-space
along bottlenecks, so that each partition can be treated as a short-horizon problem, inducing
a larger action-gap, and hence, easier credit assignment.

Transfer. Bottlenecks are useful for transfer because they are largely task agnostic—they
focus on capturing structure in the transition function, and so the same bottlenecks are
often useful for a family of tasks or reward functions. For example, in the Two Rooms task,
the ability to quickly and reliably reach the doorway enables the agent to reach the goal, no
matter where it is placed in the second room (McGovern and Barto, 2001).

Opportunities for Research.

• Scalability. Most methods for finding bottlenecks apply to discrete graphs; as a
result, these techniques often struggle to scale to large, continuous MDPs. Notable
exceptions include spectral methods (discussed in Section 4.2), which compute contin-
uous properties of the underlying graph, without explicitly representing the graph in
the first place.

• Performance guarantees. It is generally not well understood how the proxy objective
of targeting bottlenecks contributes to high-level objectives of the agent, such as reward
maximization or faster planning. Methods outlined in Section 4.6 attempt to answer
this question in general for all option discovery methods, but given the number of
option discovery algorithms related to bottlenecks, it would be useful to find if there is
a high-level objective of the agent that is maximized (at least to some degree) while
optimizing for this proxy objective.

18

Discovering Temporal Structure: An Overview of Hierarchical RL

4.2 Spectral Methods

Many option discovery methods are based on the idea of leveraging the state space’s topology,
be it to discover options that identify key states that connect different partitions of the
environment (Şimşek et al., 2005), that connect states that are far from each other when
looking at the diffusion properties of the environment (e.g., Machado and Bowling, 2016;
Machado et al., 2017), or that easily allow the agent to traverse the environment in a
reusable manner (Liu et al., 2017; Klissarov and Machado, 2023). They are termed spectral
methods because, through the eigenvectors of a matrix representation of the environment,
they extract information from the state space, such as connectivity or diffusion.

The different algorithms in this group leverage the different ways of representing the
environment as a matrix and the different types of information one can extract from such
matrices. Originally, heavily inspired by results from the graph theory literature, these
methods were based on the graph Laplacian and its eigenfunctions,3 which can approximate
any function on the graph (Chung, 1997). The normalized graph Laplacian, L, for example,
is defined as

L = D−1/2(D−A)D−1/2, (20)

where A is the graph’s adjacency matrix obtained by modelling each state in the environment
as a node. The adjacency matrix reflects the degree of connectivity between two states. The
matrix D is a diagonal matrix whose entries are the row sums of A. In the reinforcement
learning literature, the eigenvectors of the graph Laplacian are also known as proto-value
functions (PVFs; Mahadevan, 2005; Mahadevan and Maggioni, 2007).

Importantly, when considering the eigendecomposition, Le = λe, the eigenvector of
the graph Laplacian associated to the second smallest eigenvalue captures the number of
connected components in a graph (Shi and Malik, 2000), allowing one to easily identify
bottleneck states (Şimşek et al., 2005), as discussed in Section 4.1. The eigenvectors of
the graph Laplacian, in general, capture different time scales of diffusion, which can be
used to discover options that promote exploration, such as eigenoptions (Machado et al.,
2017, 2018; Machado, 2019), covering options (Jinnai et al., 2019b, 2020), and covering
eigenoptions (Machado et al., 2023).

Eigenoptions, for example, are defined such that each option, oi, is associated with the
corresponding eigenvector, ei, of the graph Laplacian. Their policy is defined as the policy
that maximizes the intrinsic reward that incentivizes the agent to navigate alongside the
direction pointed by ei, which, in the linear function approximation (and tabular) case, is
formalized as

rei(s, s′) = e⊤i
(
ϕ(s′)− ϕ(s)

)
, (21)

where ϕ(s) denotes the feature representation of state s. Originally, an option oi was defined
to terminate in state s if qeiπ (s, a) ≤ 0 for all a ∈ A, where qeiπ is defined w.r.t. rei(·, ·). All
other states in the environment were defined to be in the initiation set.

Naturally, explicitly representing an environment through its underlying graph is not
scalable. Existing methods leverage approximations of the eigenfunctions of the graph
Laplacian that can be obtained through neural networks trained with stochastic gradient
descent (Wu et al., 2019; Wang et al., 2021; Gomez et al., 2023). The underlying idea

3. Eigenfunctions can be seen as a generalization of eigenvectors to continuous state spaces.

19

Figure 7: Visualization of the first and second eigenfunctions on Montezuma’s Revenge, an
Atari 2600 game, discovered by the algorithm proposed by Klissarov and Machado (2023).
The arrows depict what the eigenoption induced by these eigenfunctions could end up being.

behind these methods is to learn a representation that captures the properties of the
approximated eigenvectors such that observations that happen “close in time” are close
in representation space and that different eigenfunctions are indeed orthogonal to each
other. The current state-of-the-art method for doing so is called the augmented Lagrangian
Laplacian objective (ALLO; Gomez et al., 2023). It consists of the following max-min
objective for approximating d eigenfunctions:

max
β

min
u∈Rd|S|

d∑
i=1

⟨ui,Lui⟩+

d∑
j=1

j∑
k=1

ωjk
(
⟨uj , JukK⟩ − δjk

)
+ b

d∑
j=1

j∑
k=1

(
⟨uj , JukK⟩ − δjk

)2
,

(22)

where L denotes the graph Laplacian again, J·K the stop gradient operator, δjk the Kronecker
delta, b is a scalar hyperparameter, and ω = [ω1,1, ω2,1, ω2,2, · · · , ωd,1, · · · , ωd,d] ∈ Rd(d+1)/2

is a vector containing all of the dual variables of the objective. Note that the optimal dual
variables, ω∗, are proportional to the smallest eigenvalues of L. These approximations have
now been used to learn options that are effective in various domains, including continuous
control tasks (Jinnai et al., 2020), 3D navigation tasks, and Atari 2600 games (Klissarov and
Machado, 2023). An issue these methods had to circumvent was that most of these approxima-
tion objectives assume the ability to sample uniformly the entire state space. This is currently
addressed by iteratively increasing the region covered by the agent (e.g., Machado et al., 2023);
some methods even do so explicitly in the objective they minimize (Erraqabi et al., 2022).

The process to compute the intrinsic reward maximized by the option is slightly different
when using neural network estimates of the eigenfunctions of the graph Laplacian. Instead
of first computing the eigenvectors, one usually directly estimates the components of the
eigenfunction associated with a particular state, s. Formally,

rfei (s, s′) = fei(s
′)− fei(s), (23)

where we used fei(s) to denote the value of i-th eigenfunction of the graph Laplacian
associated with state s. In this setting, stochastic option terminations are more common in
practice due to the difficulties generalization introduces to accurately estimating action-value
functions without interference (e.g., Klissarov and Machado, 2023).

20

Discovering Temporal Structure: An Overview of Hierarchical RL

Many other mathematical objects are somewhat equivalent to the eigenvectors of the
graph Laplacian and have also been used for option discovery. Slow Feature Analysis (SFA;
Wiskott and Sejnowski, 2002; Sprekeler, 2011), for example, are a key component of Continual
Curiosity-driven Skill Acquisition (CCSA; Kompella et al., 2017). The eigenvectors of the
successor representation (SR; Dayan, 1993) have also been shown to be equivalent to the
eigenvectors of the graph Laplacian (Machado et al., 2018).

The equivalence between the eigenvectors of the SR and of the graph Laplacian is
particularly important due to the predictive nature of the SR and the ease with which one
can learn it incrementally. In fact, the SR now has a quite prominent role in the option
literature, being used in the discovery of options for both faster credit assignment (Ramesh
et al., 2019) and exploration (Machado et al., 2018; Machado, 2019).

The successor representation is defined as

Ψπ(s, s′) = Eπ,p

[∞∑
t=0

γt1{St=s′} | S0 = s

]
, (24)

where 1 denotes the indicator function. The SR was originally introduced through an
intuition that is very similar to the one outlined above: one should capture the environment’s
dynamics by assigning similar values to temporally close states, thus creating a representation
of the underlying structure. It can also be estimated with temporal-difference learning
methods (Sutton, 1988), which, as we mentioned above, allows us to learn it incrementally:

Ψ(St, j)← Ψ(St, j) + η
(
1{St=j} + γΨ(St+1, j)−Ψ(St, j)

)
, (25)

where we used Ψ(·, ·) to denote a sample-based approximation of Ψπ.

Importantly, beyond the discovery methods mentioned above; as a representation, which
was its original purpose, the SR can also be used to combine options without additional
learning (Barreto et al., 2019a), and recent results in neuroscience and cognitive sciences
suggest the SR can model activations in the hippocampus (Stachenfeld et al., 2017) and
explain some human behaviour (Momennejad et al., 2017). These results have led Machado
et al. (2023) to propose that the successor representation should be seen as the “natural
substrate for the discovery and use of temporal abstractions” in reinforcement learning.

In terms of scalability, again, there have been many proposals on how to scale the SR to
function approximation settings ranging from specific neural network architectures (Kulkarni
et al., 2016; Machado et al., 2018; Chua et al., 2024) to ideas such as successor features (Bar-
reto et al., 2017) and successor measures (Touati and Ollivier, 2021; Farebrother et al.,
2023). Successor features, for example, can be seen as a projection of the SR onto the space
realizable by the representation, ϕ. In matrix form, if we use Φ ∈ R|S|×d to denote the
matrix encoding the d-dimensional feature representation of each state, successor features
are defined as Ψπ =

∑∞
t=0(γPπ)tΦ = (I − γPπ)−1Φ.

4.2.1 Benefits and Opportunities

Exploration. The eigenoptions line of work (Machado et al., 2017) has popularized the idea
of leveraging temporal abstraction for exploration. Eigenoptions can significantly decrease

21

the diffusion time4 in an environment, and this afforded exploration can lead to faster learning.
Machado et al. (2018) further extends previous work to the function approximation case by es-
timating the successor representation and then performing a singular value decomposition on
it. Jinnai et al. (2019b) introduce covering options, arguing that rather than constructing an
option for every eigenvector of the graph Laplacian, a single option constructed based on the
second eigenvector is sufficient. This is because that single option minimizes the cover time of
the underlying MDP, which loosely refers to how long it takes for a random high-level policy
to visit all states. Leveraging direct approximations of the eigenfunctions of the graph Lapla-
cian, Jinnai et al. (2020) extended covering options to the function approximation case, and
Klissarov and Machado (2023) did the same for covering eigenoptions (Machado et al., 2023),
demonstrating strong exploration properties in a variety of reinforcement learning problems.

Transferability. Options are often thought to be important in lifelong/continual learning
settings where skills can be reused in an ever-changing world. The benefit of Laplacian-based
options in such settings has been demonstrated both in simpler tabular problems in which
the goal location changes regularly (Liu et al., 2017) and in more complex, high-dimensional
settings in which not only the goal location would change but also the topology of the
environment (Klissarov and Machado, 2023).

Opportunities for Research.

• Improving Representations. Machado et al. (2023) have proposed the perspective
that spectral methods consist of a phase in which a representation is first learned
(e.g., PVFs, SR), followed by a phase in which options are then derived from such
a representation. This process can even be done in a cycle, which Machado et al.
(2023) called Representation-driven Option Discovery (ROD) cycle. Thus, better
representation learning methods are an exciting research frontier for this line of work
in which the learned representation informs the option discovery process. This can
be investigated from the SR perspective (e.g., Touati and Ollivier, 2021; Carvalho
et al., 2023; Farebrother et al., 2023), or from the perspective of directly estimating
the spectral decomposition of the SR (e.g., Pfau et al., 2018; Wang et al., 2021, 2022;
Gomez et al., 2023), including non-symmetric settings (Wang et al., 2023b).

• Planning. Another promising line of work involves further exploring the recent
success of Laplacian-based methods in planning and credit assignment in general,
as these options are often used in a reward-agnostic way (e.g., Sutton et al., 2023).
Validating these results beyond the tabular case and extending existing results to
partially-observable settings are also intriguing lines of work.

• Reward-Aware Representations. The representations discussed in this section rely
on the topology of the environment without considering the underlying reward function.
There is an interesting question of whether one should define proximity not only in
terms of when observations take place but also in terms of the reward associated with
them. Interestingly, the linear MDP formalism (Todorov, 2006, 2009b) gives rise to
representations akin to the SR but that are reward-aware. In this context, Tse et al.

4. The diffusion time encodes the expected number of “decisions” required to navigate between two states
randomly chosen in an environment (Machado et al., 2017).

22

Discovering Temporal Structure: An Overview of Hierarchical RL

Io3
Io2

Io1
βo2βo3

βo1 = gIo2
Io1
βo2βo3

βo1

Io1
βo2

βo1

Figure 8: Sequentially Composable Options. The skill chaining algorithm incrementally
learns options backwards from the goal, such that the subgoal of each option is the initiation
region of another option. First the agent finds the states from which it can reliably reach
the goal (left), then it finds the states from where it can reach the first region (middle), and
so on, until there is a high probability of success from the environment’s start state (right).

(2025) has shown that options derived from the eigenvectors of such a reward-aware
representation, termed the default representation (Piray and Daw, 2021), exhibit
qualitatively different exploratory behaviour when faced with regions of negative
reward in the state space.

4.3 Sequentially Composable Options

Options are said to be sequentially executable when each option terminates in a region where
another option can successfully achieve its own subgoal. Sequentially composable options are
more useful for high-level planning (Konidaris et al., 2018) and even result in highly robust
solutions (Tedrake et al., 2010). While most methods attempt to sequentially compose
discovered options post hoc, some methods explicitly incorporate sequential composition
into the option discovery objective. A prominent family of such methods is that of Skill
Chaining (Konidaris and Barto, 2009; Bagaria and Konidaris, 2020).

Figure 8 illustrates the skill chaining algorithm. Given a target region of states g ⊂ S

(for example, the task goal) (shown as a flag in Figure 8), skill chaining discovers subgoal
options that can be sequenced together so that each option execution roughly brings the
agent closer to g. This is done by learning options backward from the goal: first, the agent
learns option o1 such that β(o1) = g; this entails learning two functions: (a) the option
policy π(a|s, o1), which aims to maximize the subgoal reward ro1(s) = β(o1), and (b) the
initiation function I(o1), which is defined to be the states from which π(·|s, o1) can reliably
reach g. Shortly after, the agent creates another option o2 so that its subgoal is the initiation
of the previous option—this is because the agent can reach the goal with high probability
from states inside the first option’s initiation region. This process continues until the start
state, s0 ∼ ρ0, of the MDP is inside the initiation region of some option. This is because
when the initiation probability is high at the start state, the agent can simply execute its
learned options to achieve its goal g. Skill composability is explicitly enforced by setting the
termination region of each option β(oi) to be the states in which another option has a high
initiation probability, i.e., I(oi−1) is greater than some pre-specified threshold c ∈ [0, 1].

In skill chaining, the initiation set of an option has special meaning: it represents the
states from which option execution is likely to achieve its subgoal. Learning the initiation

23

function is usually framed as a binary classification problem: states along successful option
trajectories (those that achieve the option’s subgoal) are considered as positive examples
s+ = {s+1 , · · · , s+n } and states along unsuccessful trajectories are considered as negative
examples s− = {s−1 , · · · , s−m}. Then, a probabilistic classifier (with parameters χ) is fit on
these training examples using the binary cross-entropy loss. Now, when a new state s is
encountered during learning, I(s, o) represents the probability that the agent can reach
option o’s subgoal β(o) in a single execution of π(·|s, o). While this classification approach
is simple to implement, some of its drawbacks include: (a) the classifier struggles to adapt
to changing option policies, and (b) the agent must wait until the end of option execution
to update its initiation function. To address this issue, Bagaria et al. (2023) frame the
initiation function as a general value function (Sutton et al., 2011): the agent uses each
experience tuple (s, a, β(o), s′) to update its prediction of whether an option execution will
achieve its subgoal; this is done using the following temporal difference (TD) error and
stochastic gradient descent update rule:

δI(s, o) = β(s′, o) + I(s′, o)− I(s, o), (26)

χ = χ− αδI∇χI(s, o), (27)

where α ∈ R+ is a step size parameter and χ are the initiation function parameters. However,
at a given state s, an option’s initiation probability Iχ(s, o) can be low either because the
option policy is unlikely to successfully reach its subgoal from state s or because the agent
does not have enough data to confidently estimate Iχ(s, o). As a result, the skill chaining
agent additionally estimates its uncertainty U(s, o) about its initiation function’s predictions:
when deciding whether an option is executable from a state s, it is optimistic with respect
to that uncertainty, but when targeting another option’s initiation region, it is pessimistic
with respect to it (Bagaria et al., 2021a).

Algorithm 1 summarizes the skill chaining algorithm. First, the high-level policy picks
an option with the aim of maximizing extrinsic reward, while attending to the initiation
probability of each option. Actions are selected using the chosen option’s policy, which is
rewarded for achieving its own subgoal. Transitions encountered during option execution are
used to update the low-level option policy, the high-level policy, and the option’s initiation
function. When the agent is confident that there is no option that could reach its subgoal
from the start states of the environment, it creates a new option and adds it to the skill
chain. This new option’s subgoal region is the states where the previous option in the skill
chain has a high initiation probability, thereby enforcing sequential composability.

4.3.1 Benefits and Opportunities

Planning. Each option execution drives the agent to a small, predictable region of
the state-space. Since those states are constructed to be inside the initiation region of
another option, they can be sequentially composed. In practice, each option’s initiation and
termination region is parameterized using probabilistic classifiers, so there is a probability
that two options can be executed in sequence, which eventually permits computation of
the probabilistic feasibility of entire plans. Bagaria et al. (2023) used graph-search to find
recursively optimal solutions and Bagaria et al. (2021a) provided a dynamic programming
algorithm to approximate hierarchically optimal ways of planning with subgoal options.

24

Discovering Temporal Structure: An Overview of Hierarchical RL

Algorithm 1 Skill Chaining Algorithm

1: Initialize:
2: Initialize first option o1’s subgoal as task goal: β(o1) = g.
3: Initialize o1’s initiation function I(s, o1), uncertainty U(s, o1), and policy πθ(·|s, o1).
4: Initialize the agent’s option set using the first option: O = {o1}.
5: Hyperparameters:
6: Option horizon Ho and initiation function thresholds c1, c2 ∈ [0, 1] for each option.
7: while True do
8: Sample an option o from the following distribution:

µ(o|s)I+(s, o)∑
o′∈O µ(o′|s)I+(s, o′)

, ∀o ∈ O,

where I+(s, o′) =clip(I(s, o′) + U(s, o), 0, 1).
9: while option o does not terminate do

10: Sample an action a ∼ π(· | s, o).
11: Execute the action to get reward r and next state s′.
12: Update the option policy π(·|s, o) using reward ro(s, a, s′) = β(s′, o).
13: Update the high-level policy using extrinsic reward r.
14: Update the option’s initiation function using generalized TD-Error:

δI(s, o) = β(s′, o) + I(s′, o)− I(s, o).

15: end while
16: if Es0∼ρ0 [I(s0, o)] < c1 & Es0∼ρ0 [U(s0, o)] < c2, ∀o ∈ O then
17: Extract the last option in the chain, ω.

18: Create new option o′ such that β(s, o′) = 1

(
I(s, ω) > c

)
.

19: Add the new option o′ to the agent’s option set O.
20: end if
21: end while

Credit Assignment. Skill chaining has demonstrated more sample-efficient credit as-
signment in goal-reaching tasks than non-hierarchical RL, which can be attributed to the
following reasons. (1) Jumpy transitions: Skill chaining methods usually use the entire T -step
option transition (st, o,

∑
rt:t+T , st+T) to update the high-level policy µ(o|s). Much like

n-step returns and TD(λ) in non-hierarchical RL, this has the effect of rapidly propagating
credit among state-action pairs. (2) Focused next-state distribution: not only does each
option execute for multiple timesteps, but it also guides the agent to states that are closer
to the goal. In other words, options in the skill chain modify the agent’s state distribution
to make states closer to the goal more likely. Since these states are usually the ones with
non-zero values, bootstrapping-based value learning (e.g., TD) progresses more rapidly.

Exploration. Since skill discovery proceeds backward from the goal, the algorithm requires
either an exploration policy or a set of demonstration trajectories (Konidaris et al., 2010;
Kang and Oh, 2022) that achieve the task goal. This advocates for a view of skill chaining

25

as producing options that are good for exploitation, which can be combined with options
that are good for exploration. Deep skill graphs (DSG) (Bagaria et al., 2021b) overcome this
limitation: the agent finds intrinsically motivating states and learns skill chains that connect
them to each other; the resulting chains form a graph abstraction of the environment, which
is useful for planning. Furthermore, the graph building process has a Voronoi bias (LaValle,
1998; Lindemann and LaValle, 2004), meaning that it tends to grow towards parts of the
state-space where the agent has the least experience.

Opportunities for Research.

• Goal-reaching options. To learn the initiation set of each option in the chain, its
subgoal must be described using a binary function: either the subgoal is achieved in
the current state, or it is not. Such a subgoal description is not universal, as it cannot
be used to describe continuing tasks like maintaining a constant velocity or repeating
periodic motions. If the initiation cumulant (Bagaria et al., 2023) can be formulated
for general reward functions, then skill chaining can be applied to non-goal-reaching
tasks as well.

• Controlling all state variables at the same time. If we think of states being
composed of different state variables (a property known as factoredness Boutilier et al.
2000), then skill chaining drives the value of all variables to a certain range of values.
In more complex environments, it may be unnecessary, or even impossible, to control
all state variables at the same time. Future work could create a version of skill chaining
that leverages the factoredness of the state-space and only controls a subset of all the
factors at any given time.

Additional connections to control theory and motion planning. Lozano-Perez et al.
(1984), Mason (1985), and Burridge et al. (1999) popularized the view of policies as funnels :
these policies drive a large set of ordinary states to a small set of desired states. Policies can
be sequentially composed to reach some target set of states by placing the end (narrow part)
of each funnel inside the beginning (broad part) of some other funnel. Tedrake et al. (2010);
Ames and Konidaris (2019) provided a way to compute these initiation regions for complex,
dynamical systems using convex optimization and built robust controllers for fixed-wing
UAVs (Tedrake et al., 2010). Later, Konidaris and Barto (2009) extended this idea to
model-free RL. Bagaria and Konidaris (2020) then upgraded the skill-chaining algorithm
with deep learning so that it could be applied to higher-dimensional systems. Variants of
deep skill chaining have been used in robotic surgery (Huang et al., 2023), manipulation
(Lee et al., 2021; Vats et al., 2023), multi-agent RL (Xie et al., 2022), and task and motion
planning (Mishra et al., 2023).

4.4 Empowerment Maximization

Empowerment-based methods discover diverse skills by maximizing an agent’s control over
its environment. At its core, empowerment quantifies how much influence an agent has over
its future observations—an agent is more empowered when it can reliably cause a wider
variety of outcomes (Klyubin et al., 2005; Salge et al., 2014). For example, having access to
a car empowers you to reach many different locations; learning to swim empowers you to

26

Discovering Temporal Structure: An Overview of Hierarchical RL

Figure 9: Empowerment-based skill-discovery methods learn skills that generate trajectories
that are maximally different from one another, with the constraint that, having observed
a trajectory, it should be clear which skill generated it. (a) Trajectories generated by 6
distinct skills in MuJoCo Ant; (b) (x, y) location of the center of mass of the Ant plotted
after executing skills learned by the DADS algorithm. Figure from Sharma et al. (2020b),
used with permission.

survive in water. Empowerment can also be seen as a way to maximize social influence in
multi-agent settings (Jaques et al., 2019), or to seek agreement between future states and
the agent’s internal representations (Hafner et al., 2020).

Formally, empowerment is defined as the mutual information between an agent’s actions
and its future states. Mutual information I(X;Y) =

∑
x,y p(x, y) log p(x,y)

p(x)p(y) measures how
much information one random variable provides about another, equaling zero when the
variables are independent and increasing as they become more statistically dependent.

Now, consider an agent that executes a sequence of n actions a = (at, at+1, . . . , at+n−1)
starting from state st, resulting in state st+n. The n-step empowerment at state st is:

En(st) = max
p(a)

I(a; st+n|st), (28)

where p(a) is the probability distribution over action sequences that the agent can choose.
This captures the maximum amount of information that action sequences can provide about
future states, optimized over all possible action distributions p(a). Expanding the mutual
information reveals its intuitive meaning:

I(a; st+n|st) = H(st+n|st)−H(st+n|st,a), (29)

where the first term represents uncertainty about future states given only the current state,
while the second represents remaining uncertainty after choosing actions. Empowerment
measures how much this uncertainty can be reduced through deliberate action choice.

As the mutual information is intractable, Mohamed and Rezende (2015) propose to
estimate it through variational inference. Specifically, the authors estimate p(a|st+n) using
the variational approximation qϕ(a|st+n) and leverage the non-negativity of the KL divergence

27

to obtain5:

I(a; st+n|st) = H(a|st)−H(a|st, st+n) (30)

= H(a|st) + E[log p(a|st, st+n)] (31)

≥ H(a|st) + E[log qϕ(a|st, st+n)] (Variational Bound) (32)

This variational bound (Equation 32) provides a practical way to compute empowerment in
high-dimensional continuous spaces using neural networks (with parameters ϕ). However,
this objective finds open-loop action sequences a, and we want to discover skills (closed-loop
policies). Gregor et al. (2017) addressed this concern by introducing Variational Intrinsic
Control (VIC), which replaces fixed action sequences with parameterized skills πθ(a|s, z)
conditioned on skill variables z. VIC maximizes the mutual information between skills and
final states reached from skill execution:

JVIC = I(z; st+n|st), (33)

where st is the initial state and st+n is the final state after executing skill z for n timesteps.
We can expand this as:

I(z; st+n|st) = H(z|st)−H(z|st+n, st). (34)

Similar to Mohamed and Rezende (2015), VIC uses the variational lower bound:

I(z; st+n|st) ≥ H(z|st) + E[log qϕ(z|st+n, st)]. (35)

This variational lower bound can be optimized by training two neural networks: a policy
πθ(a|s, z) that executes skills, and a discriminator qϕ(z|st+n, st) that predicts which skill
was used based on the final state.

Eysenbach et al. (2019) simplified VIC’s approach in their method Diversity is All You
Need (DIAYN). While VIC maximizes mutual information between skills and final states,
DIAYN instead focuses on making skills distinguishable from the states they visit throughout
execution. DIAYN builds on maximum entropy reinforcement learning, which augments the
standard RL objective with an entropy bonus H(A|S) to encourage exploration. DIAYN
learns skills by maximizing:

JDIAYN = I(s; z) +H(a|s)− I(a; z|s), (36)

which has an intuitive interpretation: skills should be distinguishable from the states
they visit (I(s; z)), actions should be diverse (H(a|s)), but skills should be consistent in
their behaviour (−I(a; z|s)). This objective can further be simplified by expanding the
mutual information in terms of the conditional entropies, and then applying the variational
approximation similar to Mohamed and Rezende (2015):

JDIAYN =
(
H(z)−H(z|s)

)
+H(a|s)−

(
H(a|s)−H(a|s, z)

)
(37)

= H(z)−H(z|s) +H(a|s, z) (38)

= H(a|s, z) + E[log p(z|s)]− E[log p(z)] (39)

≥ H(a|s, z) + E[log qϕ(z|s)]− E[log p(z)]. (40)

5. Note that we are departing from our usual notation to denote p and q using the conventional notation in
variational inference.

28

Discovering Temporal Structure: An Overview of Hierarchical RL

The final step implies the use of a discriminator qϕ(z|s) to variationally approximate
p(z|s); the result is an intra-skill pseudo reward function for each skill z:

rz(s) = log qϕ(z|s)− log p(z), (41)

assuming that the H(a|s, z) term is maximized using an maximimum entropy RL formulation
(Ziebart et al., 2008). This leads to a practical algorithm: sample skill z ∼ p(z), execute
policy πθ(a|s, z), train discriminator qϕ(z|s) to predict skills from states, and update the
policy using pseudo-reward in Equation 41.

While DIAYN successfully learns diverse behaviours, Sharma et al. (2020b) observed that
it can discover skills with unpredictable effects, making them difficult to sequentially compose
downstream. Their method, Dynamics-Aware Discovery of Skills (DADS), addresses this
by explicitly encouraging predictable skill dynamics while maintaining diversity. Their
formulation captures two desirable properties simultaneously: different skills should lead
to different future states (diversity), and given the current state and skill, the future state
should be predictable. Expanding the mutual information:

I(z; st+n|st) = H(st+n|st)−H(st+n|st, z) = E
[
log

p(st+n|st, z)
p(st+n|st)

]
. (42)

DADS uses variational approximation with two learned models: a skill dynamics model
qψ(st+n|st, z) and a marginal dynamics model qξ(st+n|st). The skill reward function becomes

rz(st, st+n) = log qψ(st+n|st, z)− log qξ(st+n|st), (43)

encouraging skills that make state transitions more predictable than the marginal dynamics.
Resulting skills have focused effects, and examples of learned skills are visualized in Figure 9.
These methods share the key insight that useful skills should be distinguishable from their
effects on the environment—whether through final states (VIC), visited states (DIAYN), or
state transitions (DADS), each approach learns discriminators that identify which skill was
executed from observations. This creates an intrinsic reward signal driving the discovery of
diverse, meaningful behaviours without external supervision.

Let τ = (st, at, st+1, at+1, ..., st+n) denote a trajectory of states and actions. DIAYN’s
update rule relies on the approximation that log(qϕ(z|τ)) =

∑n
i=0 log(qϕ(z|st+i)), i.e., as a

sum of per-timestep log probabilities along the trajectory generated by the skill z. Instead
of the sum-based decomposition of the trajectory, which treats each transition as being
independent from the others, VALOR approximates qϕ(z|τ) using an LSTM architecture
(Achiam et al., 2018). Strouse et al. (2022) noticed that the discriminator, qϕ is pessimistic
in new states; to address this pessimism, their algorithm DISDAIN, augments skill learning
with a novelty bonus. CIC (Laskin et al., 2022) improves the optimization of the mutual
information objective using contrastive learning. Relative VIC (Baumli et al., 2021) departs
from this view slightly by introducing a new term to the optimization: rather than requiring
that trajectories be distinguishable from the observed trajectory, they additionally require
that the trajectory not be distinguishable from the final state alone, thereby encouraging
skills to cause characteristic changes in state, rather than taking the agent to different parts
of the state-space alone.

29

4.4.1 Benefits and Opportunities

Exploration. Empowerment serves as an intrinsic motivation that encourages agents to
seek states where they have the most control over future outcomes (Klyubin et al., 2005).
Several recent empowerment methods seek to address the exploration problem in RL by
explicitly optimizing for skill diversity (Eysenbach et al., 2019) and state-space coverage
(Campos et al., 2020); by learning a diverse set of skills, agents not only explore effectively
in a single-task setting (Massari et al., 2021), but also adapt quickly to new tasks, reducing
sample complexity (Sharma et al., 2020b; Baumli et al., 2021; Hansen et al., 2020). One
difficulty in obtaining better exploration with empowerment-based methods is that the
learned skills tend to be localized, i.e., only cover a small area. Lipschitz-constrained
Skill Discovery (LSD) (Park et al., 2022) replaces mutual information estimation with a
Lipschitz-constrained objective, ensuring that learned skills correspond to large, meaningful
state transitions rather than minor variations. Exploration is further enhanced by paying
attention to the the parts of the environment that are within the agent’s control (Park et al.,
2023)—this is done by using a controllability-aware distance function that assigns higher
values to harder-to-control state transitions, leading to more complex skill acquisition, such
as object manipulation, without direct external supervision.

Credit Assignment. While the primary motivation of empowerment-driven techniques
is that of exploration, recent methods seek to improve the process of learning policies
over discovered skills. For example, Leibfried et al. (2019) derive Bellman operators that
combine empowerment-, and reward-maximization; Sharma et al. (2020b,a) advocate for
learning option models during the skill-discovery phase so that the learned options can
be composed via a planner at test-time. In fact, the simplification of empowerment-based
objectives to state-reaching (Pitis et al., 2020) can be viewed as a compromise between
learning more expressive skills and creating stationary objectives that ease online policy
learning for utilizing discovered skills.

Transfer. Most empowerment-based skill-discovery algorithms learn skills that are distin-
guishable via specific states encountered in sampled trajectories (for example, the last state
of the trajectory). This approach leads to skills that are tied to specific states encountered
during skill-learning; in other words, learned skills do not transfer to unseen, related parts of
the state-space. Relative VIC is a promising approach for learning transferrable skills because
it rewards skill policies for causing characteristic changes in state, rather than targeting
specific states themselves. Some algorithms use successor features to enable transfer (Zahavy
et al., 2021), but more research is needed on learning skills that simultaneously maximize
empowerment and enable reuse across different portions of the state-space.

Opportunities for Research.

• Optimization challenges. Despite significant progress in online mutual information
estimation, empowerment remains challenging to estimate and optimize (Achiam et al.,
2018). To address this, Park et al. (2024c) introduce a Wasserstein variant of the
mutual information objective, where the KL divergence in MI is replaced with the
Wasserstein distance. Finding such ways to ease the estimation and optimization of
the empowerment objective is a key area of current research.

30

Discovering Temporal Structure: An Overview of Hierarchical RL

• Connections to causal learning. Gopnik (2024) hypothesizes that if an agent learns
an accurate causal model of the world, it will necessarily increase its empowerment, and,
conversely, increasing empowerment will lead to a more accurate (albeit implicit) causal
model of the world (Salge et al., 2014). This could enable model-based planning for
complex, long-horizon problems (Kahneman, 2011), fully unleashing the power of HRL.

• Possible signatures in human learning. There is mounting evidence in develop-
mental cognitive science that the drive to learn causal models of the world is behind
many of the exploratory capabilities of children (Gopnik and Wellman, 2012). For
example, Rovee-Collier and Gekoski (1979) show that infants as young as 3 months old
vary their actions to observe their causal effects on their environment; Du et al. (2023b)
show that children playing some video games can be thought of as maximizing their em-
powerment. Gopnik (2024) hypothesizes that empowerment maximization in RL could
become the new dominant paradigm (after Bayesian approaches that struggle to scale
to large hypothesis spaces) for explaining exploration in humans and other animals.

Additional Connections to goal-based exploration. When the variational distribu-
tion in Equation 35 is Gaussian and fixed, empowerment objectives reduce to goal-based
exploration in RL (Choi et al., 2021), by which we mean methods that propose random
target states and use a goal-conditioned policy (Schaul et al., 2015) to reach them, for
example, in hindsight experience replay (Andrychowicz et al., 2017) and Go-Explore (Ecoffet
et al., 2020). In fact, it is possible to think of goal-based exploration and variational empow-
erment as lying on a spectrum: the more expressive the variational distribution, the more
powerful, albeit non-stationary, the associated representation learning problem (Choi et al.,
2021). Furthermore, Warde-Farley et al. (2019) advocate for taking a mutual information
maximization approach to goal-conditioned reward functions, Pitis et al. (2020) argue that
empowerment maximization is roughly equivalent to maximizing the size of the set of goals
that can be achieved by the agent’s policy, and Levy et al. (2023) find that goal-conditioning
can make the empowerment objective significantly easier to compute and optimize. These
findings further blur the lines between goal-based exploration in RL and empowerment
maximization.

4.5 Via Environment Rewards

Most of the work on learning skills has focused on discovering intrinsic reward functions,
which are then used to learn option policies. There are, however, two important lines of work
that instead aim to learn behaviour directly through the rewards given by the environment.

Feudal Methods

The first set of approaches builds on feudal reinforcement learning (Dayan and Hinton,
1993). In this framework, the agent is decomposed hierarchically into managers and workers:
managers set subgoals for workers to achieve, and workers use non-hierarchical RL to achieve
those subgoals. In this way, goal-setting is decoupled from goal-achievement; each level in
the hierarchy communicates to the level below it what must be achieved, but does not specify
how to do so. The manager maximizes the reward coming from the environment to define
the goals that the worker should achieve. Feudal RL was extended to deep RL through

31

Feudal Networks (FuN) (Vezhnevets et al., 2017). FuN learns a two-level hierarchy in which
the higher-level manager outputs a goal vector gt at time t that specifies the direction in
which the lower-level worker should modify the agent’s current state. Specifically, a linear
transformation, ϕ, then maps the last c goals outputted by the manager into an embedding
vector wt,

wt = ϕ
(t∑
i=t−c

gi
)
. (44)

The worker’s policy is then defined through this embedding vector and a matrix of learnable
parameters Ut, that is πworker = SoftMax(Utwt).

The worker policy is trained through the standard policy gradient update rule, where
the rewards are the goal vectors,

rworker(st, gt−i, st−i) = 1/c

c∑
i=1

dcos(st − st−i, gt−i), (45)

where dcos(x, y) is the cosine similarity measure between vector x and y. The manager policy
is learned with the task reward function; however, the authors propose the following update
rule, which they term directional policy gradient,

∇µ(gt|st) = ∇dcos(st+c − st, gt)
(
Qmanager(st, gt)− V manager(st)

)
. (46)

This update closely puts an emphasis on the direction in which a goal vector points to, and
whether that direction was achieved by transitioning from st to st+c.

As with most skill discovery methods, the high-level policy is trained at the same time as
the low-level policy; as the low-level policy changes during learning, data from a high-level
action taken in the past may not yield the same low-level behaviour in the future (Nachum
et al., 2018). This non-stationarity is addressed using relabeling tricks and off-policy learning
in the HIRO algorithm (Nachum et al., 2018). In their work, as well as following literature,
the worker’s intrinsic reward is defined as,

rworker(st, gt, st+1) = −||st + gt − st+1||. (47)

This definition forgoes the explicit use of the cosine similarity; however, it maintains the idea
that a goal vector would represent a delta between state transitions. Later, Levy et al. (2019)
present the algorithm Hierarchical Actor Critic algorithm, which improves upon HIRO by
removing the need for dense reward functions, by instead using hindsight experience replay
(Andrychowicz et al., 2017). In a separate direction, Hafner et al. (2022) instantiate the
feudal architecture within a model-based algorithm called Director, which shows strong
performance across a wide range of environments. Their approach additionally provides
interpretability as the world model can decode goals into images.

Option-Critic

The second set of approaches is based on the option-critic (Bacon et al., 2017). In this work,
the authors derive both the intra-option policy gradient theorem as well as the termination
gradient theorem, which provide the update rules for learning option policies and termination

32

Discovering Temporal Structure: An Overview of Hierarchical RL

functions, respectively. The intra-option policy gradient theorem leads to the following
update,

∂qπ(s, o)

∂θ
=

∑
s,o

dγπ,µ,β(s, o)
∑
a

∂πθ(a|s, o)
∂θ

qu(s, o, a), (48)

where, dγπ,µ,β(s, o) =
∑

t γ
tPπ,µ,β(St = s,Ot = o), is the γ-discounted occupancy measure

over state-option pairs. In the policy gradient theorem (Sutton et al., 1999a), the flat policy
is multiplied by the state-action value function, leading to an increased probability for
actions whose future discounted return is higher. In the case of the intra-option policy
gradient, the quantity modulating the action probabilities is the state-action-option value
function; therefore, a strict generalization of the policy gradient theorem. The termination
gradient theorem used to learn the termination function is derived from the option value of
option o upon arrival in state s (see Equation 11). The update rule takes the following form,

∂uβ(s′, o)

∂ψ
=

∑
s,o

dγπ,µ,β(s, o)
∂βψ(s′, o)

∂ψ
A(s′, o), (49)

where A(s′, o) = qπ(s′, o)− vµ(s′) is the advantage function over options, representing how
advantageous it is to be in state s′ with option o with respect to the value of state s′ averaged
over all options. Usually, the advantage function is implemented as a heuristic for reducing
the variance of the estimator, but in this case, it comes naturally from the derivation of the
theorem. Later, Bacon (2018) unified these different objectives and derivation through the
following objective,

Jα(ω) =
∑
s,o

α(s, o)Qω(s, o) = Eα,ω

[∞∑
t=0

γtr(St, At)

]
, (50)

where α : Dist(S×O) is a distribution of an initial state-option pair, and where ω defines all
the parameters within the options framework, including the termination, option policies, and
high-level policy. The authors show how, by assuming independence between the parameters
of these components, the previous update rules can be recovered.

The line of work surrounding the option-critic has received significantly more attention
than we can present in detail in this section. Some of the contributions include learning
safe policies (Jain et al., 2018), using multiple discount factors (Harutyunyan et al., 2019b),
learning option termination in an off-policy manner (Harutyunyan et al., 2019a), extending
the theorems to multiple levels of hierarchy (Riemer et al., 2018), and theoretical derivations
that take parameter sharing between options into consideration (Riemer et al., 2019).

4.5.1 Benefits and Opportunities

Credit assignment. Vezhnevets et al. (2017) show strong performance of their feudal
method on a set of Atari 2600 games from the Arcade Learning Environment (Bellemare
et al., 2012) and 3D navigation challenges (Beattie et al., 2016). These domains are long-
horizon and require the agent to propagate credit across multiple steps. The authors report
significantly better results than a baseline not leveraging such a hierarchy.

33

Transfer. Bacon et al. (2017) present experiments where the learned options improve the
ability to generalize across changes in the Four rooms environment (Sutton et al., 1999b)
compared to non-hierarchical RL algorithms. Such changes included modifying the goal
location and the agent’s starting location. This benefit is later reinforced by multiple works
(Zhang and Whiteson, 2019; Khetarpal et al., 2020b; Kamat and Precup, 2020; Klissarov
and Precup, 2021) showcasing the transferability of options learned through the option-critic
method in more complex environments such as locomotion control (Todorov et al., 2012)
and 3D navigation (Chevalier-Boisvert et al., 2023). In these transfer experiments, the agent
usually first learns to perform a task before some component of the task is changed.

Interpretability. A particular highlight of the option-critic line of work is that inter-
pretability naturally emerges by learning options directly from environmental rewards. For
example, Bacon et al. (2017) report experiments where the termination function would
highlight bottleneck states, which are often seen as key in learning temporal abstraction
(Stolle and Precup, 2002). Findings on interpretability are similarly reported across different
domains (Harb et al., 2018; Klissarov et al., 2017; Zhang and Whiteson, 2019).

Opportunities for Research.

• Avoiding option degeneracy. An important practical obstacle when learning
options through the update rules proposed by the option-critic is that it may lead to
degenerate solutions (Luo et al., 2023). Options tend to reduce to actions where each
of the options’ duration is only one timestep long. Another observed phenomenon is
that only one option ends up being executed throughout all episodes. In both cases,
the essence of temporal abstraction is lost. To avoid such undesirable behaviour, the
authors add a penalty term cdelib to the termination gradient’s advantage function:
A(s′, o) + cdelib. This term essentially discourages the termination to prefer switching,
unless the advantage in doing so is greater than the value of cdelib. A thorough
theoretical derivation was later done to justify the use of such a term, which was
coined as the deliberation cost (Harb et al., 2018). This cost is introduced as a
hyperparameter, which raises the question of what value we should choose for a specific
environment. Discovering more general solutions to option degeneration remains an
open area of research.

• Reliance on the environment reward. The strength of the methods we presented
in this section is that they do not require a human-defined objective for learning the
hierarchy. As such, such methods heavily rely on an informative environment reward.
For example, in feudal methods, if the high-level policy is poorly trained due a sparse
environmental rewards, it might output goals that fail to drive the learning progress
of the lower-level policy. To address the exploration challenge, recent methods like
HAC-Explore incorporate a novelty-based intrinsic rewards (McClinton et al., 2021) or
demonstrations (Gupta et al., 2019) to solve longer-horizon tasks.

4.6 Directly Optimizing for the Benefits of Hierarchical Reinforcement Learning

Many of the option discovery methods that we have discussed so far rely on proxy objectives;
these objectives include finding bottleneck states, empowerment maximization, more reliable

34

Discovering Temporal Structure: An Overview of Hierarchical RL

composability, and so on. The intuition is that if the agent had options that maximized
these proxy objectives, it would unlock agent-level capabilities such as effective exploration,
credit assignment, or transfer. Indeed, these methods often show empirical success in some
scenarios, but the formal connection between these proxy objectives and the overall objectives
of the agent is unclear (Solway et al., 2014). For example, options that target bottleneck
states are empirically useful in some tasks, but what kind of performance can we expect
from the same technique in an entirely different problem? In fact, several papers have shown
that not all skills are created equal—that is, options that are perfectly suited for a particular
task, might severely hurt agent-level objectives in other tasks (Jong et al., 2008; Solway
et al., 2014). To address this gap, a class of methods—initiated by Solway et al. (2014)—has
sought to discover options with precise guarantees on agent-level objectives. These methods
explicitly state the performance criterion of the agent and then derive an algorithm that
discovers options with bounded loss on that criterion.

4.6.1 Benefits and Opportunities

Planning. In the planning context, option discovery can be framed as the search for a set
of options that minimizes the planning time—defined as the number of iterations a planning
algorithm (e.g., value iteration) takes to approximate the optimal value function v∗ within
some accuracy ϵ (Silver and Ciosek, 2012; Jinnai et al., 2019a). Formally, given a maximum
allowable value error maxs∈S |v∗(s)− v̂(s)| ≤ ϵ, the goal is to find a set of at most k options
O that minimizes Lϵ, the number of iterations needed to reach this accuracy:

min
O

Lϵ s.t. |O| ≤ k. (51)

Jinnai et al. (2019a) prove that this problem is NP-hard, even in deterministic tabular
MDPs. They introduce approximation algorithms with provable guarantees, but their results
are limited to point options—options that initiate and terminate in a single state.

While their method minimizes worst-case planning time, Average Options (Ivanov et al.,
2024) focuses instead on minimizing the expected planning time across a distribution of
tasks. These tasks share the same transition dynamics, but differ in their start and goal
states. The idea is to discover options that reduce the expected cost of reaching any state
from any other:

arg min
O

dO(G) = arg min
O

∑
s∈S

∑
s′∈S

dO(s, s′), (52)

where dO(s, s′) is a non-symmetric distance metric (e.g., shortest path length) in the
MDP graph augmented with options O; such an augmentation adds edges to the graph,
while leaving nodes unchanged. Like the worst-case version, this problem is also NP-hard.
However, by reducing it to the well-studied k-medians with penalties problem in graph
theory (Meyerson and Tagiku, 2009), Ivanov et al. (2024) derive efficient approximation
algorithms with bounded suboptimality. Planning can also be sped up using options in the
single-task setting: Wan and Sutton (2022) present an option discovery algorithm that seeks
options that maximize reward—similar to option-critic (Harb et al., 2018)—but reduces the
number of options available at different states to reduce planning time.

35

Exploration. In the context of exploration, Jinnai et al. (2019b) formalize the performance
criterion of the agent as minimizing the number of steps needed for a policy to visit every
state (as a proxy for discovering some unknown reward). They show that this performance
criterion is related to the graph-theoretic property of cover-time, which measures the number
of steps needed by a random walk to visit every edge in a graph. To define the cover
time C, we first need the hitting time Hij between two states i → j: the hitting time in
a Markov chain is the greatest lower-bound on the number of steps needed to get from
source state i to destination state j: Hij = inf{t : St = j | S0 = i}. Then, the cover
time Ci starting in state i is the maximum hitting time over all possible destination states:
Ci = maxj∈SHij . Jinnai et al. (2019b) show that the expected cover time E[Ci]—where
the expectation is with respect to the dynamics induced by a random walk—can be most
effectively reduced by creating an option that connects the two states that are furthest apart
according to the second eigenvector of the graph Laplacian (see Equation 20). Jinnai et al.
(2019b) also show that finding options that minimize cover-time in a graph is NP-Hard; but,
they provide an approximation algorithm that minimizes an upper-bound on the expected
cover-time. This method was later extended to continuous environments using deep learning-
based approximations of the graph Laplacian (Jinnai et al., 2020; Wu et al., 2019), further
suggesting strong connections to the eigenoptions literature (Machado et al., 2017, 2023;
Klissarov and Machado, 2023) (c.f. Section 4.2).

Credit assignment. As discussed earlier, options can accelerate policy evaluation by
enabling value updates that span multiple steps, rather than progressing one step at a
time. Bacon and Precup (2016) formalize this intuition using the lens of matrix splitting, a
technique from numerical linear algebra that speeds up the solution of linear systems. In
their view, each set of options defines a modified Bellman operator that can be interpreted as
a preconditioned version of the original policy evaluation problem. Recall that the Bellman
expectation equation for a fixed policy π is:

v = rπ + γPπv, (53)

where v ∈ R|S| is the value function, rπ is the expected reward vector, and Pπ is the transition
matrix under policy π. This is a linear system of the form Av = b, with A = I − γPπ, and
b = rπ. Planning with options induces a matrix splitting A = M −N (Varga, 2000), leading
to an iterative update of the form:

vk+1 = M−1Nvk +M−1b. (54)

In this formulation, the matrix M reflects the dynamics induced by the options, and is
chosen to be easy to apply and invert; the remaining part N captures what is not directly
handled by the options. The matrix M−1N is known as the iteration matrix, as it governs
how the current value estimate vk influences the next one vk+1. This kind of transformation
is known as preconditioning : a way of rewriting the problem so that the resulting iterative
updates converge more quickly. The speed of convergence is governed by the spectral radius
ρr(M

−1N): the largest absolute eigenvalue of the iteration matrix. A smaller spectral radius
means that errors shrink faster with each iteration. From this perspective, a good set of
options is one that minimizes ρr(M

−1N), enabling value information to propagate more
efficiently. While Bacon and Precup (2016) do not introduce a concrete option discovery

36

Discovering Temporal Structure: An Overview of Hierarchical RL

algorithm, they offer a powerful design principle: discover options that act as preconditioners
for value propagation. This opens the door to leveraging ideas from numerical linear algebra
in option discovery.

Transfer. In the context of transfer, Solway et al. (2014) define the optimal set of options
as those that maximize the efficiency with which an agent can learn the optimal policy
for other, possibly unseen, sets of tasks. They show that in this setting, optimal options
are those that maximize Bayesian model evidence under the distribution of tasks that the
agent is expected to solve. Specifically, a hierarchy that maximizes model evidence, also
provably minimizes the geometric mean of the number of samples needed to find the optimal
policy for any task in the given task distribution. Brunskill and Li (2014) consider a similar
formulation of the option transfer problem: given interaction data from a set of tasks, how
can an agent learn options that minimize the sample complexity of learning in a future
stream of tasks? They find that this problem is at least as hard as the set cover problem in
Operations Research, and is thus also NP-hard. They use a greedy approximation algorithm
for option discovery and evaluate it empirically in a tabular MDP.

Opportunities for Research.

• Guarantees in more general settings. The papers discussed in this section
emphasize the importance of formally stating the objective of option discovery and
relating that to the overall objectives of the agent. However, this research is still
nascent, and more papers exploring this subject are needed. For instance, can we
develop formal algorithms that bound planning time without needing the assumption
of “point options”? Can we bound planning time or cover time when using function
approximation? Although Brunskill and Li (2014) derive an algorithm to minimize
sample complexity during transfer, the greedy approximation algorithm they present
does not bound sample complexity; future work could extend their theoretical results
to bound the performance of the greedy approximation algorithm. Finally, can we
write down the problems of option-driven exploration, planning, and policy evaluation
in different ways that result in HRL algorithms with even stronger guarantees or better
scaling properties?

4.7 Meta Learning

RL algorithms, such as Q-learning, learn policies; meta-RL algorithms, in contrast, aim to
learn the RL algorithm itself, or parts of it, to subsequently learn a policy. This creates
a bilevel optimization: the algorithm for learning the RL algorithm itself is called the
outer-loop, while the learned algorithm (which learns a policy) is called the inner-loop
(Schmidhuber, 1987; Thrun and Pratt, 1998; Beck et al., 2023). The appeal of meta-RL
approaches is that if the environment demands certain properties from the RL agent (for
example, transferability), then such properties will automatically be learned from data,
without the explicit need for careful human ingenuity and design in every part of the training
process (Silver et al., 2021).

Typically, a meta-RL algorithm consists of an inner and an outer loop. Within each
of these loops, a set of parameters is being maximized. Concretely, let ωout represent the
parameters learned by the outer loop, and ωin the parameters learned by the inner loop.

37

These parameters in practice represent a particular subset of the option parameters presented
in Section 3. For example, in the work by Veeriah et al. (2021), the inner loop optimizes
the parameters option policies and the high-level policy, whereas in the work by Frans et al.
(2018) the parameters of the high-level policy are part of the outer loop.

Meta-Gradients

A common instantiation of meta-RL algorithms is through the use of meta-gradients. In the
inner loop, the agent updates the inner parameters,

ω′
in ← ωin + α∇ωinJin(ωin), (55)

where Jin is an arbitrary objective that depends on ωin. To obtain the meta-gradients, we
assume that the outer parameters depend on the inner parameters. Data is then collected
with the updated inner parameters such to proceed to the following update,

ω′
out ← ω′

out + α∇ωoutJout(ω
′
in(ωout)), (56)

ω′
out ← ω′

out + α∇ω′
in
Jout(ω

′
in(ωout))∇ωoutω

′
in(ωout), (57)

where ∇ωoutω
′
in(ωout) encodes how the outer loop parameters affected the updated inner

loop parameters. The objectives Jin and Jout may differ in various ways, such as defining
different distributions over tasks.

Veeriah et al. (2021) leverage meta-gradients to learn options in high-dimensional navi-
gation environments. In the inner loop, they update the option policies parameters, θ, and
the high-level policy parameters κ,

θ′ ← θ + αθ(Gt − qπ(st, ot)) · ∇θ[log πθ(at|st, ot)− qπ(st, ot)], (58)

κ′ ← κ+ ακ(Gµt − vµ(st)) · ∇κ[logµκ(ot|st)− vµ(st)], (59)

where Gt is the option policy return (see Section 3.2.1) and Gµt is a n-step return for the high-
level policy defined as, Gµt =

∑n
j=1 γ

jrt+j − γnc+ γn+1Vµ(st+n) where c is a switching cost
added on option terminations, similar to Harb et al. (2018). The outer loop is instantiated
through these updates to the parameters ν of the option reward function, and the parameters
ψ of the termination function,

ψ ← ψ + αψ(Gµt − vµ(st))∇ψ log πθ′(ψ,ν)(at|st, ot), (60)

ν ← ν + αν(Gµt − vµ(st))∇ν log πθ′(ψ,ν)(at|st, ot). (61)

The outer loop updates the option-reward and termination meta-parameters using a new
trajectory generated by interacting with the environment using the most recent inner-loop
parameters, θ′(ψ, ν) and κ′(ψ, ν), which depend on the outer loop parameters. The update
in the outer loop assesses the impact of updates to the high-level policy, µκ, and option
policies, πθ, and it may involve a different distribution of tasks than the one used in the
inner loop, as is common in meta learning (Finn et al., 2017).

38

Discovering Temporal Structure: An Overview of Hierarchical RL

Figure 10: Black-box meta reinforcement learning. Trials consist of multiple episodes during
which the hidden state, hi, of the agent is unrolled. The hidden state is only reset between
trials. Figure reproduced from (Duan et al., 2016).

Black-box Meta Reinforcement Learning

In black-box meta RL (Wang et al., 2016; Duan et al., 2016), an agent interacts with
a sequence of different tasks drawn from an arbitrary distribution, pξ : ξ → R+. Each
interaction with a task, or distribution of tasks, is considered a trial, which itself consists of
N episodes, represented in Figure 10. During a trial, the agent receives observations, rewards,
and termination signals from the environment, where episode termination signals represent
the episode boundaries. These variables are used to update the agent’s internal memory h,
which is typically represented by the hidden state of an RNN (Hochreiter and Schmidhuber,
1997) or the context of a transformer network (Vaswani et al., 2017). Importantly, the agent
continuously updates h across episodes within the same trial; the memory is only reset at
the end of each trial. The overall goal is to maximize the total reward accumulated over an
entire trial,

max
π

Eξ∼pξ

[
N∑

episode=1

Eπ
[∑

t

rξ(st, at)
]]
, (62)

where rξ is the reward associated with task ξ. This objective incentivizes the agent to learn
how to adapt its policy based on the experience gathered so far during a trial, effectively
forcing it to implicitly learn, through the updates to its policy’s memory h, a reinforcement
learning rule capable of efficient adaptation to new tasks. When further conditioning the
policy π on the task’s goal g, as done by Bauer et al. (2023), this approach can lead to
human-timescale adaptation.

4.7.1 Benefits and Opportunities

Transfer. As discussed earlier, a major benefit of learning options is that of reuse: options
learned in one part of the state-space could speed up learning in another (Taylor and Stone,
2009; Konidaris and Barto, 2007). Some methods have tried to discover transferable options
using meta-learning. For example, MLSH (Frans et al., 2018) discovers a set of policies and
trains a high-level policy to select among them. The meta-objective trains these components
such that the high-level policy can quickly learn to solve new tasks from a distribution by

39

reusing the learned skills, making them reusable across a pre-specified task distribution
(Nam et al., 2022; Gupta et al., 2018; Fu et al., 2023). MODAC (Veeriah et al., 2021)
uses meta-gradients (Xu et al., 2018; Oh et al., 2020) to do the same: an outer loop learns
option reward functions and termination functions that an inner loop maximizes using policy
gradients. The outer loop of the optimization learns from the reward coming from the
environment.

Exploration. Meta-learning approaches have also sought to address the exploration
question in non-stationary and multi-task settings. When the agent finds itself in a new
environment, how can it leverage its past experiences to targetedly explore this new environ-
ment? This problem is called meta-exploration by Beck et al. (2023). For example, when
someone is in a new house and they have to look for utensils, they begin their search from
the kitchen; similarly, we would like to create RL agents that can direct their exploration for
quick adaptation in new environments (Gupta et al., 2018). This is one of the motivations
for the Adaptive Agent (AdA) (Bauer et al., 2023) that uses meta-learning to train a policy
capable of human-timescale adaptation in a massive, combinatorial task space (OEL Team
et al., 2021). Specifically, they use black-box meta-RL: the policy is implemented as a
Transformer-XL model (Dai et al., 2019). This model πθ takes the history h of interactions
within the current episode (past states, actions, rewards) and goal description, g, as input to
determine the next action. The adaptation happens implicitly within the recurrent state of
the model. The combinatorial complexity of the environments allows for careful selection of
tasks that are at the appropriate difficulty given the current agent capabilities, generating
an effective meta-learning curriculum. As such, AdA mixes ideas from meta-learning as well
as curriculum learning, which we cover in the next section.

Opportunities for Research.

• Relaxing the multi-task formulation. Meta-learning approaches have demon-
strated abilities of transfer, adaptation, and meta-exploration—abilities that have been
challenging to scalably acquire using other techniques. Furthermore, meta-learning
via in-context learning (Dong et al., 2022; Bauer et al., 2023; Raparthy et al., 2023)
provides a scalable, and potentially simpler way, to acquire these crucial capabilities.
Existing meta-learning approaches rely on a specialized multi-task formulation, with
clear task boundaries and episodes. Methods that lift these assumptions will be able
to bring these capabilities to a wider variety of settings. For an in-depth review of
meta learning approach, please refer to Beck et al. (2023).

4.8 Curriculum Learning

Within a complex environment, there exists a diversity of goals that are interesting for
an agent. Some of these goals might be easily achievable, whereas others would simply
be impossible to complete for an agent’s current capabilities. How could, then, such an
agent learn to achieve difficult goals? An effective strategy would be to try to achieve a
curriculum of goals, where the complexity of each attempted goal increases continuously
with the agent’s capabilities. The idea of curriculum learning has a long history in AI that
goes beyond the RL setting (Kaplan and Oudeyer, 2003; Schmidhuber, 2004; Bengio et al.,
2009; Schmidhuber, 2011). A central question then becomes, how should one prioritize

40

Discovering Temporal Structure: An Overview of Hierarchical RL

which goal or task should be attempted at any given time? Taking the HRL perspective, we
can rephrase this question as: how should the high-level policy select the next goal? This
question can be formalized through the following objective function:

max
µ

∑
g∈G

Eπ′ [rg], (63)

where the goal-conditioned policy, π′, used in the expectation, Eπ′ [·], depends on the choice
of the goal selection distribution µ. Specifically, π′ is obtained by starting with an initial
policy π0 and applying N iterative updates. For each iteration k = 1, . . . , N , a goal gk ∼ µ
is sampled, and the policy is updated via πk = Ugk(πk−1), where the update rule Ugk aims to
maximize the reward rgk associated with goal gk, i.e. through policy gradient updates. The
final policy used in Equation 63 is π′ = πN . The optimization will thus find the distribution
µ which, when used to update π, would lead to the best performance as measured across all
goals G.

The objective of Equation 63 is also referred to as the global learning progress (LP), and
is, as such, intractable. Researchers have thus approximated this objective through local
measures of LPlocal (Baranes and Oudeyer, 2013; Stout and Barto, 2010; Forestier et al.,
2017; Colas et al., 2018) which can be defined as,

LPlocal,g = Vπt,g − Vπt−i,g, (64)

where Vπt,g is the estimate of the performance of the updated policy after t iterations on
goal g and Vπt−i is that of the policy at iteration t− i. These values are usually obtained
through Monte Carlo estimates by rolling out policies over multiple episodes, thus possibly
covering a subset of the possible goals within the goal space.

In such methods, the high-level policy µ is often optimized through multi-arm bandit
algorithms rather than through RL. In other words, µ maximizes the following one-step
reward: maxµ = E[rµ] = E[LPlocal,g], which can then be defined as

µt(g) =
exp(|Et(g)|/e)∑
g∈G exp(|Et(g)|/e)

, (65)

where e is the temperature and Et is an exponential moving average of the rate of change in
performance on goal g,

Et+1(g) = (1− α)Et(g) + αLPlocal,g. (66)

The global learning process objective can be approximated through other means, which we
discuss in the following sub-section on the benefits and opportunities.

In addition to covering methods that produce curricula by explicitly generating goals
according to a certain distribution, we also include a discussion around implicit curricula.
In these methods, certain properties of the learning algorithm itself create a curriculum-like
effect. A prominent example of an implicit curriculum is hindsight experience replay (HER)
(Andrychowicz et al., 2017), which stores experience generated by seeking a certain goal g in
a buffer called an experience replay, and relabels such experience with a variety of other
goals g′. We present HER in Algorithm 2, where we highlight the operations that differ

41

from the standard use of an experience replay. We use the symbol of the high-level policy, µ,
as the operator that relabels experience. In its most common form, HER relabels stored
trajectories that do not reach their intended goals with whatever final state was reached.
The relabeled goals then tend to naturally progress from those easily achievable by a random
agent to increasingly challenging ones.

Algorithm 2 Hindsight Experience Replay (HER)

Require: Goal sampling strategy S
1: Initialize replay buffer D
2: for episode = 1 to M do
3: Sample an initial state s0 and a goal g
4: Generate an episode trajectory (s0, a0, s1, . . . , sT)
5: for t = 0 to T − 1 do
6: Calculate reward rt = rg(st, at)
7: Store transition (st, at, rt, st+1, g) in D
8: Sample a set of additional goals G′ = S (current episode)
9: for all g′ ∈ G′ do

10: Calculate hindsight reward r′t = rg
′
(st, at)

11: Store transition (st, at, r
′
t, st+1, g

′) in D
12: end for
13: end for
14: end for

Research on learning from a curriculum of goals has received much more attention than
we can cover here, producing a diversity of approximations to the global learning progress
(Forestier and Oudeyer, 2016; Matiisen et al., 2017; Kovač et al., 2020; Akakzia et al., 2021).
For an in-depth review please see the surveys by Colas et al. (2020c) and Portelas et al. (2020).

4.8.1 Benefits and Opportunities

Exploration. One of the main benefits of leveraging curriculum learning to achieve goals
is that the agent will be continuously pushed to the limits of its capacity. By doing so, it
might discover new locations in an environment or learn completely new behaviour from
the combination of previously achieved goals. A family of methods approximates the global
learning progress, specifically with the intent of seeking intermediate difficulty. Florensa et al.
(2018) propose using a Goal Generative Adversarial Network (Goal GAN) to automatically
generate a curriculum of tasks for reinforcement learning agents. The method focuses on
generating Goals of Intermediate Difficulty (GOID), defined as goals where the agent’s
current policy, π, achieves an expected performance vπ within a specific range:

GOIDi := {g : vmin ≤ vπ ≤ vmax}. (67)

Here, vmin and vmax represent the minimum and maximum desired performance, ensuring
goals are neither too easy nor too hard for the current policy πi. The generator in Goal
GAN is trained to output goals within the GOID set, whereas the discriminator is trained
to distinguish between goals that are within the set from those that are not. Racanière et al.

42

Discovering Temporal Structure: An Overview of Hierarchical RL

(2019) introduce a setter-solver paradigm with three criteria represented through values in
[0, 1]: validity, feasibility, and coverage. Goals are sampled according to the distribution
defined by these criteria, allowing for a balanced selection. Their findings highlight that
these criteria, along with conditioning on the current version of the environment, are crucial
for an effective learning curriculum. Sukhbaatar et al. (2018) instead rely on asymmetric
self-play to generate a curriculum of explorative goals in reversible or resettable environments,
leading to improved performance on a diverse set of tasks. Campero et al. (2021) train a
goal-generating teacher to guide a goal-conditioned student policy by proposing goals that
are neither too hard nor too easy, as measured by the number of timesteps to reach the goal,

rµ =

{
+a if t+ ≥ t∗

−b if t+ < t∗,
(68)

where a, b are hyperparameters that quantify the bonus and penalty, tπ represents the time
it took the policy to reach the goal, and t∗ is a hyperparameter.

Additionally, HER-based approaches (Andrychowicz et al., 2017; Fang et al., 2018; Yang
et al., 2021a) have demonstrated promising results in improving exploration compared to
curiosity-driven methods. Curriculum-guided HER (Fang et al., 2019) introduces an explicit
curriculum that transitions from curiosity-driven selection early on to goal-proximity focus in
later stages, mimicking human-like exploration. Complementing HER, CER (Liu et al., 2019)
enhance exploration by introducing a competitive dynamic between two agents learning the
same task, where one agent is penalized for revisiting states explored by the other. Many
more works show how curriculum learning can help in hard-to-explore environments (Colas
et al., 2018; Zhang et al., 2020; Pitis et al., 2020; Colas et al., 2020a).

Transfer. Learning successfully through curricula produces a whole set of behaviours that
were previously not seen. OEL Team et al. (2021) leverage population-based training to
quantify progress on goal completion within large, open-ended, and procedurally-generated
environments and tasks. Through a continuum of task difficulty, the authors show that the
resulting goal-conditioned agent can generalize zero-shot to new situations.

Opportunities for Research.

• Refining the measure of progress. One of the main challenges in deriving a
curriculum of goals is accurately measuring how difficult a chosen goal is for a learning
algorithm at a certain point in time. Different heuristics can work well for certain
environments, for example, the number of timesteps required for reaching a goal
(Campero et al., 2021), or might involve a combination of heuristics (OEL Team
et al., 2021). However, such formalizations might not be generally applicable. Ideas
from unsupervised environment design, where the environment evolves as well as
the agent’s parameters, could be particularly promising (Dennis et al., 2020; Jiang
et al., 2021; Parker-Holder et al., 2022; Samvelyan et al., 2023). Another important
desideratum is that a curriculum should continuously increase the difficulty of the
goals, but should also generate interesting goals. Finding a formalization that would
encode a general measure of interestingness and difficulty is still an open question.
However, for many tasks of interest, such as tasks where human prior knowledge would
be relevant, leveraging foundational models offers a particularly promising way to

43

nexpansion = argmaxn𝔼s[Vnovelty(s)]

τ ∼ πnovelty

nnew ← max
s∈τ [Rnovelty(s)]nnew ∼ S

(a) (b) (c)

Figure 11: (a) In the original DSG algorithm, a state is sampled uniformly at random (blue
star) from the state-space S and the graph is pulled towards it via its nearest neighbor node
(green). (b) The IM-DSG agent uses intrinsic motivation to identify a node to expand using
an exploration value function vnovelty. (c) Once the agent reaches the expansion node, it
executes an exploration policy πnovelty, and the most novel state in the resulting trajectory
is identified as a target for a new skill.

define such metrics for curriculum learning, as covered in Section 6. One notable work
is that of Zhang et al. (2024), which investigates whether an LLM’s common sense can
be a good measure of interestingness in open-ended environments.

4.9 Intrinsic Motivation

Intrinsic Motivations (IM) drive actions for their own sake, meaning that they are not
in service of achieving an obvious, externally specified goal; instead, they are in service
of augmenting knowledge and learning skills whose utility only becomes apparent later
on (Oudeyer and Kaplan, 2007; Barto and Şimşek, 2005; Berlyne, 1965; Harlow, 1950).
Computationally, this can be formalized using notions of information gain (Bellemare et al.,
2016b)—an agent may take actions that result in new information about its environment,
even if it requires forsaking extrinsic reward in the short term. IM underpins a developmental
approach where an agent learns reusable skills autonomously, preparing it for various future
challenges. For example, children, as intrinsically motivated biological agents, develop skills
by engaging in activities that yield interesting, memorable outcomes (Gopnik et al., 2009);
these skills improve in efficiency with repetition and can be strategically reproduced for
specific goals (Barto et al., 2004). Such behaviours are well represented by options, with
the intended outcomes encapsulated in the options’ subgoals (Singh et al., 2004). While

44

Discovering Temporal Structure: An Overview of Hierarchical RL

we have discussed IM-based option discovery approaches like empowerment maximization,
spectral methods, and bottleneck discovery, this section explores additional methods not
covered by these categories.

One common intrinsic motivation signal is novelty, which decreases with repeated state
visitations. For example, upon visiting state s, an agent might receive

rint(s) = N(s)−1/2, (69)

where N(s) is the visit count. This count-based bonus encourages exploration of infrequently
seen states by making familiar states less rewarding (Auer et al., 2008; Strehl and Littman,
2008; Bellemare et al., 2016b; Lobel et al., 2023). An example of using this for option
discovery is provided by the Relative Novelty algorithm (Simsek and Barto, 2004). Here, a
state s is deemed a good subgoal if it leads to experience that is significantly more novel
than the experience preceding it. Let n(s) be a novelty score (e.g., inverse visitation count
from Equation 69), and let w+ and w− be fixed-size windows of future and past states,
respectively. The relative novelty at time t is then computed as

RN(st) =
1

|w+|
∑
s∈w+

n(s)
/ 1

|w−|
∑
s∈w−

n(s)

 . (70)

States with high relative novelty are likely to be gateways to unexplored regions (e.g.,
doorways in Figure 6), and can be automatically selected as subgoals. An option is then
created to reach each such subgoal from a broader initiation set, often by learning a dedicated
policy using intrinsic reward. In this way, the agent transforms spikes in novelty into reusable
skills without supervision or knowledge of external task rewards.

A related example is First Return then Explore (FRTE) (Ecoffet et al., 2020), which
formalizes intrinsic motivation using count-based novelty over discretized “cells”, which are
pre-specified state abstractions that serve as option subgoals (an example state abstraction
is spatially downsampling image-based observations). Every time a new cell is encountered,
the agent logs it in an archive. The policy is then conditioned to return to these cells
to deepen exploration. FRTE selects target cells based on their inverse visitation count,
returning to underexplored frontiers before taking random, exploratory actions. This loop
results in a growing archive of reachable states, each effectively defining an option subgoal.
A model-based approach has recently been proposed by Bagaria et al. (2025b), who extend
the Deep Skill Graphs algorithm discussed in Section 4.3 to image-based observation spaces
where a meaningful distance metric is not readily apparent. Their algorithm, Intrinsically
Motivated Deep Skill Graphs (IM-DSG), learns a graph-based model of the world—nodes
of the graph represent option subgoal regions (abstract states) and edges represent option
policies (abstract actions). Figure 11 iilustrates the main steps of the algorithm: first, the
agent picks an existing node based on how much that node is expected to contribute to
exploration (Figure 11(b)), then the agent plans with its abstract model using dynamic
programming to determine the options it needs to executes to reach the sampled node, from
where it executs a novelty seeking exploration policy (Figure 11(c)). States visited by the
novelty-seeking policy are candidates for creating a new node in the graph, similar to the
Relative Novelty algorithm discussed earlier.

45

A different line of intrinsically motivated option discovery leverages structural state-space
features to define internal subgoals. In particular, methods for factored MDPs (Boutilier
et al., 2000) use the causal dependencies between state features to propose options. A factored
MDP assumes the state can be described by a vector of state variables and that the transition
dynamics factorize according to a dynamic Bayesian network (DBN). HEXQ (Hengst et al.,
2002) was an early algorithm in this category. HEXQ automatically decomposes a factored
MDP into subtasks by detecting exits—states where a change in one state variable causes a
change in another variable (or termination). More formally, if X and Y are state variables,
an exit can be identified where the conditional entropy H(Y ′ | X, a) increases sharply,
indicating that a transition cannot be explained without accounting for additional variables.
Each such transition is marked as an exit and treated as a subgoal. HEXQ then learns a
hierarchy of options, each option driving the agent toward one of these subgoals—lower-level
options correspond to frequently-changing variables, whereas higher-level options handle
more slowly-changing aspects. In this way, HEXQ yields an option hierarchy spanning
multiple levels of temporal abstraction.

A similar approach is proposed by Jonsson and Barto (2006), who analyze the structure
of a learned DBN to extract a causal abstraction hierarchy. For each action, they examine
the DBN’s parent-child dependencies: if variable Xi influences the next-state value of Xj ,
i.e., Xi ∈ Parent(X ′

j | a) for some action a, then Xi is said to causally affect Xj . These
dependencies define a directed graph over state variables, which is decomposed into strongly
connected components (SCCs). The SCCs are then topologically ordered to yield levels of
abstraction—variables in earlier components are controlled first, while later components are
conditioned on them. This is because earlier variables in the topological ordering tend to
be those that causally influence, but are not influenced by, variables in later components.
While their algorithm assumes access to the transition model, Vigorito and Barto (2008)
propose a model-free algorithm that incrementally builds DBNs online through exploration.
When new dependencies are detected—e.g., when variable Xi begins to influence Xj—a
new option is instantiated to induce that dependency reliably. This learning process can be
guided by structure learning techniques (e.g., maximizing Bayesian Information Criterion),
or by identifying transitions that lead to salient changes in state abstractions. More recently,
Nayyar and Srivastava (2024) cluster states based on the temporal-difference (TD) error:

δt = rt + γv(st+1)− v(st), (71)

which serves as a proxy for learning progress. Regions with high variance in δt are recursively
split, producing a symbolic abstraction over state variables and spawning new options
targeted to regions where prediction error remains high. This method resembles HEXQ, but
instead of focusing on the frequency of variable changes, it uses the TD-error incurred by
candidate state abstractions.

One downside of these factored approaches is that they assume the agent observes
factored state variables, which requires significant domain knowledge. Bagaria et al. (2025a)
address this limitation by developing an agent that learns to identify relevant features
directly from image observations. When their agent encounters a particularly novel state, it
uses counterfactual analysis to isolate which visual features are responsible for the novelty
of that state. Then, the agent learns a classifier that focuses only on these salient features
(Singh et al., 2004), ignoring other aspects of the image. This feature-specific classifier serves

46

Discovering Temporal Structure: An Overview of Hierarchical RL

as an abstract subgoal (Bagaria and Schaul, 2023) for option learning, enabling factored
skill discovery without requiring pre-specified state decompositions.

4.9.1 Benefits and Opportunities

Exploration. The primary role of intrinsic motivation in RL is to facilitate exploration,
especially when extrinsic rewards are sparse, delayed, or misleading. By rewarding novelty,
surprise, or learning progress, IM helps the agent identify and prioritize skills that could
result in mastery of the environment (Veeriah et al., 2018). The resulting behaviours are
often more structured and directed than undirected exploration strategies like epsilon-greedy
or softmax sampling.

Transfer. Options discovered through intrinsically motivated factor-based methods are
transferable because they target changes in individual state variables or abstract subspaces
(Sutton et al., 2023). For example, in HEXQ, an option that changes a frequently occurring
variable—like an agent’s position—can be reused across many contexts where that variable
matters, regardless of the values of other variables. Similarly, in methods based on causal
abstraction (Jonsson and Barto, 2006; Vigorito and Barto, 2008), options are constructed to
affect only a specific part of the environment while assuming other parts are stable or inde-
pendently controllable. This modularity reduces interference between options because each
option specializes in a different part of the environment, which additionally encourages com-
positionality in behaviour space. As a result, once such an option is learned, it can be reused
across multiple tasks or contexts without retraining, greatly improving sample efficiency.

Opportunities for Research.

• Generalize factored approaches to large observation spaces. Factored ap-
proaches like HEXQ assume access to explicit state variables, limiting their applicability
to high-dimensional observation spaces such as images or sensor data. Recent works
(Bagaria et al., 2025a; Higgins et al., 2016; Kim and Mnih, 2018) demonstrate some
promising initial results, but significant challenges remain in automatically discov-
ering meaningful factors without domain knowledge. Future research should focus
on developing methods that can identify relevant features and their causal dependen-
cies in continuous, high-dimensional spaces while maintaining the transferability and
combosability benefits of factored approaches.

• Improved estimates of novelty. While count-based novelty measures work well in
discrete spaces, they struggle in continuous environments where exact state revisitation
is unlikely. Recent advances (Bellemare et al., 2016b; Burda et al., 2019; Lobel et al.,
2023; Guo et al., 2022) provide neural network-based alternatives, but fundamental
challenges persist in distinguishing meaningful novelty from environmental stochasticity
(sometimes colloquially called the “noisy TV” problem). Future work should develop
more robust novelty estimation methods that can maintain exploration incentives across
different timescales, handle function approximation errors gracefully, and integrate
structural priors about environment dynamics to focus on causally relevant state
changes.

47

• Connections to other discovery techniques. Intrinsic motivation approaches have
developed largely independently from other option discovery methods like graph cluster-
ing, empowerment, and spectral decomposition techniques. However, recent theoretical
work suggests that some of these approaches may be unified under information-theoretic
frameworks (Achiam et al., 2018). Establishing formal connections between intrinsic mo-
tivation and other discovery paradigms (for example, (Machado et al., 2020)) could en-
able hybrid approaches that leverage the complementary strengths of different methods.

5. Discovery through Offline Datasets

Offline RL (or batch RL) aims to learn policies from pre-collected datasets, avoiding active
data collection. This enables scalable deployment in domains such as robotics, autonomous
driving, education, and healthcare (Levine et al., 2020), where interaction data can be
difficult to obtain. Similarly, offline skill discovery leverages these datasets to extract
temporally abstract behaviours that can later serve as high-level primitives (in either offline
or online RL) to accelerate learning.

In this section, to facilitate the discovery of skills, we assume access of an offline
dataset D = {τi}Ni=1 where τi = (sit, a

i
t, r

i
t)
T
t=1 represents a trajectory interacting with the

environment. The dataset can be populated with expert demonstrations or acquired through
arbitrary policies. It is also possible that not all components are present in the dataset;
indeed, numerous works do not assume access to rewards (most methods in Section 5.1) or
actions (Kim et al., 2019).

A closely related line of work, which we do not cover in detail, focuses on learning
useful representations from offline datasets (Ma et al., 2020; Touati et al., 2023; Farebrother
et al., 2023; Chen et al., 2023; Park et al., 2024b; Tirinzoni et al., 2025). A key idea in
these methods involves learning representations that decouple environment dynamics from
specific task rewards. This is often done by modeling discounted future state occupancies or
their features (Dayan and Hinton, 1993; Barreto et al., 2017), which then allows for rapid
adaptation to new reward functions or goal specifications, typically by linear combination of
the learned representations based on the new reward.

5.1 Variational Inference of Skill Latents

A prominent class of methods in offline skill discovery focuses on the reconstruction loss
of pre-collected trajectories τ , typically optimized through likelihood maximization of the
observed data. In these approaches, skills will be defined as the latent variables within the
reconstruction loss. The methods rely on unlabeled experiences, τ = (st, at)

T
t=1—that is, data

collected without explicit reward feedback—and in some cases, even excludes actions (Kim
et al., 2019). This is often referred to as “unsupervised skill discovery” (Eysenbach et al.,
2019). We model each trajectory τ with a latent skill sequence:

ζ = (zt, bt)
T
t=1, zt ∈ Rd, bt ∈ {0, 1}, (72)

where zt encodes the skill active at time t and bt is a boundary signal that indicates when a
skill starts or ends, i.e. the analogue of an option-termination signal.6

6. Both zt and bt can be in different parameterization (e.g., bt ∈ Z as boundary indicator variable in Kipf
et al. (2019)); some implementations even dispense with bt (e.g., OPAL (Ajay et al., 2021)).

48

Discovering Temporal Structure: An Overview of Hierarchical RL

Equation below states the maximum-likelihood objective: the parameters ϕ are adjusted
to maximize the average log likelihood that the model assigns to the trajectories observed in
the dataset:

J(ϕ) = Eτ∼D
[
log pϕ(τ)

]
. (73)

Here the term pϕ(τ) =
∫
pϕ(τ, ζ) dζ has already marginalized the latent skill sequence ζ, so

maximizing J(ϕ) encourages the model to explain the observed trajectories without fixing
any particular skills in advance. Because the integral over ζ is usually intractable, we replace
log pϕ(τ) by its evidence lower bound (ELBO), obtained by introducing an approximate
posterior qϕ(ζ | τ) and applying Jensen’s inequality:

log pϕ(τ) = log

∫
qϕ(ζ | τ)

pϕ(τ, ζ)

qϕ(ζ | τ)
dζ

≥ Eqϕ(ζ|τ)
[
log pϕ(τ, ζ)− log qϕ(ζ | τ)

]
= Eqϕ

[
log pϕ(τ | ζ)

]
−DKL

(
qϕ(ζ | τ) ∥ pϕ(ζ)

)
. (74)

Averaging over τ∼D, and introducing the β-weight7 (Higgins et al., 2016) which balances
reconstruction and regularization terms yields the training objective:

JELBO(ϕ) = Eτ∼D,ζ∼qϕ(ζ|τ)
[
log pϕ(τ | ζ)

]︸ ︷︷ ︸
reconstruction

− β Eτ∼D DKL

(
qϕ(ζ | τ) ∥ pϕ(ζ)

)︸ ︷︷ ︸
regularization

, (75)

which is maximized with respect to ϕ. The first term obliges the model to reconstruct each
trajectory by segmenting it at boundaries bt and encoding each segment with a latent skill
vector zt; the second term regularizes those encodings toward the prior, encouraging the
emergence of a compact skill space. In practice, three distinct models are employed whose
parameters are jointly denoted by ϕ:

• Prior pϕ(ζ): defines a prior distribution over latent skill sequences. A common choice
is a fixed, factorized prior (e.g., unit Gaussian for zt and Bernoulli for bt), but the prior
can instead be endowed with learnable parameters and conditioned on the current
state, yielding pϕ(ζ | s) (Ajay et al., 2021; Nam et al., 2022). This can also serve as a
prior on the policy over skills, µκ(z | s);

• Decoder pϕ(τ | ζ): models the probability of a trajectory conditioned on a given skill
sequence. Importantly, the decoder can also be formulated as a skill-conditioned policy,
πθ(a | s, ζ), that reconstructs only the actions in the trajectory, as done in several
works (Kipf et al., 2019; Ajay et al., 2021; Pertsch et al., 2021; Nam et al., 2022). To
do so, we need to adjust Equation 75 accordingly:

JELBO(ϕ, θ) = Eτ∼D, ζ∼qϕ(ζ|τ)

[T∑
t=1

log πθ
(
at | st, ζ

)]
︸ ︷︷ ︸

action-reconstruction

− β Eτ∼D DKL

(
qϕ(ζ | τ) ∥ pϕ(ζ)

)︸ ︷︷ ︸
regularisation

.

(76)

7. We slighlty abuse the notation here, where usually in our work β refers to the termination function.

49

• Encoder qϕ(ζ | τ): given an observed trajectory, returns a distribution over the skill
sequence that likely produced it.

Skill discovery algorithms differ in both the optimization procedure adopted for Equa-
tion 75 and the specific parameterization of latent variables. The largest group, variational-
autoencoder (VAE)-based methods (Kingma and Welling, 2014), directly maximize the ELBO
in Equation 75. Alternative strategies include the Expectation-Gradient framework (Fox
et al., 2017; Krishnan et al., 2017) and adversarial approaches inspired by generative ad-
versarial networks (Sharma et al., 2018), each offering distinct bias-variance trade-offs and
inductive biases for learning reusable skill spaces.

The learned skills naturally support a hierarchy. In such works, a low-level controller,
πθ(at | st, zt), is typically trained offline via behavioural cloning to execute any given skill,
while a high-level policy, µκ(zt | st), is subsequently optimized, either online (Pertsch et al.,
2021; Nam et al., 2022; Salter et al., 2022), or with offline RL (Ajay et al., 2021), thereby
accelerating learning efficient policies. The skills can also augment the primitive action
space, expanding the agent’s control repertoire (Fox et al., 2017; Kipf et al., 2019; Jiang
et al., 2022), or be transformed into intrinsic reward signals to enhance long-term credit
assignment (Liu et al., 2023b).

Beyond pure likelihood maximization, it is also common to add a compression reg-
ularizer grounded in the minimum description length (MDL) principle (Rissanen, 1978).
MDL prefers the model that can be transmitted with the fewest total bits of (i) the model
parameters and (ii) the data encoded through that model. Viewing the latent variables as
skills and boundaries (Equation 72), the model parameters are the decoder (and prior if
parameterized), and the data are the offline trajectories; hence, a concise skill set shortens
the overall description length.

The bits-back coding argument (Hinton and Zemel, 1993; Honkela and Valpola, 2004;
Zhang et al., 2021b) shows that maximizing the ELBO (Equation 75) approximately mini-
mizes the description length, but with an ill-chosen prior p(ζ), the optimum can collapse to
a degenerate representation (e.g., a single skill encoding that simply mirrors the observa-
tions). To avoid this, LOVE (Jiang et al., 2022) augments the ELBO with an MDL-inspired
information-cost term that explicitly penalizes skills increasing the expected code length of
transmitting trajectories, yielding a representation that is both informative (high ELBO)
and economical (low description length):

min
ϕ

LDL(ϕ) s.t. JELBO(ϕ) ≥ C, (77)

LDL(ϕ) = Eτ ∼D, {bt,zt}∼ qϕ(· | τ)

[
−

T∑
t=1

bt log p∗z
(
zt;ϕ

)]
, (78)

where bt = 1 indicates the start of a new skill at time t, and C is a constant. The optimal
prior on z, p∗z, that minimizes the expected description length is defined by:

p∗z(z;ϕ) =
Eτ ∼D, {bt,zt}∼ qϕ(· | τ)

[∑T
t=1 bt δ

(
zt = z

)]
Eτ ∼D, {bt,zt}∼ qϕ(· | τ)

[∑T
t=1 bt

] , (79)

50

Discovering Temporal Structure: An Overview of Hierarchical RL

with δ(·) denoting the indicator function. Intuitively, LDL penalizes having too many skill
boundaries and distinct skill choices, driving the method toward a concise skill decompo-
sition, and longer skills encompassing common structures are generally favored to avoid
the degenerate solution where each skill represents a single action. Salter et al. (2022)
instead leverages the concept of bottleneck option by introducing a predictability objective,
encouraging option-level transitions to be predictable. The authors show that maximizing
this predictability reduces the conditional entropy and thus the optimal code length, and
this objective is equivalent to applying the MDL principle.

Vlastelica et al. (2023) cast offline skill discovery as empowerment maximization,
presented in Section 4.4, under an imitation constraint. To ensure that each skill remains
faithful to the offline demonstrations, they constrain the divergence between the induced state
occupancy and the state occupancy dE from a skill-independent expert dataset, resulting in
a constrained optimization problem:

max
{πz}, qϕ

Ez∼p(z),s∼dπ[log qϕ(z | s)] s.t. DKL

(
dπ ∥ dE

)
≤ ε, ∀z. (80)

Here, dπ denotes the state-occupancy measure of the skill-conditioned policy, estimated in
the offline setting via density-based learning. The term qϕ represents a skill discriminator
that tightens a variational lower bound on the mutual information between skills and states.
It simultaneously diversifies behaviours by maximizing the lower bound on the mutual
information between states and skills, and regularizes them by penalizing departures from
the expert state distribution dE .

5.1.1 Benefits and Opportunities

Credit Assignment. By extracting hierarchical structure from offline datasets, agents
can break complex trajectories into more manageable subgoals. This segmentation makes it
easier to understand why certain results occur, as it allows each outcome—such as achieving
a subgoal—to be more directly linked to the specific actions and conditions that produced
it. In other words, by focusing on a sequence of subgoals rather than the full sequence
of primitive actions, the learning algorithm can more easily attribute success or failure to
specific decisions or events. For example, Kipf et al. (2019) tackle credit assignment in maze-
like environments with delayed feedback. Their method infers segment boundaries q(bi | s, a),
with bi ∈ [1, T + 1] functioning similarly to option termination functions, and encodes each
segment using q(zi | s, a) as latent skill (subgoal) descriptors. This segmentation captures
subgoal structure, facilitating effective credit assignment across subgoals when applying the
skills in sparse-reward settings. Similarly, Kim et al. (2019) improve credit assignment in
goal-oriented navigation tasks by decomposing action-free trajectories into subsequences by
inferring skill descriptors zt and binary termination signals bt ∈ {0, 1}.

Transfer. By discovering skills from offline datasets, agents develop a foundational set
of versatile competencies. These competencies can then be transferred to new tasks with
minimal adjustment. Pertsch et al. (2021) show promising results on transferring skills
obtained in the offline dataset to more complex simulated robotic tasks unseen in the dataset
(e.g., maze navigation with larger maps in evaluation). Similarly, Jiang et al. (2022) and
Salter et al. (2022) show that by optimizing a compression objective, in addition to the

51

reconstruction one, the discovered skills help transfer across multiple tasks. Nam et al.
(2022) demonstrate that by meta-training a high-level policy, πθ(zt | st, e), where e is a task
encoding, and executing a low-level policy, πθ(at | st, zt), which is learned via behavioural
cloning, the agent can solve a wide range of new tasks in a meta-RL setting.

Exploration. When reusing the offline discovered skills for online interaction, this can
reduce the difficulty of exploration since the agent can quickly apply well-tested, pre-
learned behaviours rather than learning them through trial-and-error in real-time. Fox et al.
(2017) show promising exploration results in a simple four-room domain by augmenting
the action space with discovered parameterized options. Salter et al. (2022) show that the
learned temporally compressed bottleneck options are beneficial for exploration in maze-like
environments with delayed rewards.

Avoiding Distributional Shift. In offline RL, distributional shift describes the dis-
crepancy between the action distribution present in the training dataset and the actions
chosen by the policy during evaluation or deployment. This occurs when the policy selects
actions that are rarely or never observed in the dataset, leading to unreliable value estimates.
Ajay et al. (2021) leverage offline skill discovery to mitigate this issue. Their approach
encodes short trajectories (e.g., every K steps) from the dataset into a skill descriptor z. By
maximizing the log-likelihood of actions in trajectories τ , conditioned on states st and skill
descriptors z, the method captures recurring behaviours present in the data. The offline
dataset can then be enhanced using z, and a high-level policy, πθ(z | s), can be derived by
off-the-shelf offline RL algorithms. The authors show that such a temporal structure reduces
compounding errors for extrapolating out-of-distribution actions in offline RL.

Opportunities for Research.

• Optimization challenges. Evident in some studies (Jiang et al., 2022), optimization
challenges can lead to degraded skill quality if the learning dynamics are not carefully
managed. Additionally, the under-utilization of reward signals in existing datasets
creates an opportunity to further refine learned skills, and incorporating offline RL
methods—rather than relying solely on reconstruction-based approaches—into HRL
may unlock greater performance gains, as Hu and Leung (2023) provide provably
positive results on sample efficiency.

• Broader scope of test environments. Additionally, many methods in this field
primarily validate their concepts on simulated robotic navigation tasks, which typically
involve deterministic transitions and rewards (Gao et al., 2024), and often favor specific
inductive biases. A natural extension would be scaling this paradigm to real-world,
image-based tasks, or other practical applications with different properties.

5.2 Hindsight Subgoal Relabeling

In Section 5.1, we discussed the methods that automatically infer the skill descriptors,
usually characterized by latent variables. In this section, we explore methods that identify
and relabel subgoals within an offline dataset, effectively leveraging existing transitions to
learn how to achieve subgoals (Kaelbling, 1993b). Offline experiences offer valuable insights
into identifying subgoals, which can be viewed as milestones or waypoints for accomplishing

52

Discovering Temporal Structure: An Overview of Hierarchical RL

a task (Gupta et al., 2019; Park et al., 2024a), or abstracting bottleneck states to make a
good partition of the state space (Paul et al., 2019). This is conceptually similar to hindsight
experience replay (Andrychowicz et al., 2017) we discussed in Section 4.8, which relabels the
final or intermediate states reached in a trajectory as if they were the intended goals.

In an examplar work by Paul et al. (2019), a reward-free trajectory dataset, D ={
(s

(i)
1 , a

(i)
1 , . . . , s

(i)
ni)

}nd

i=1
, is segmented into an ordered list of ng disjoint partitions, G =

{1, . . . , ng}, that serve as subgoals.

Initial labeling. Each trajectory is equipartitioned by assigning consecutive subgoal
indices:

g
(i)
t = j iff

⌊
(j−1)ni

ng

⌋
< t ≤

⌊
j ni

ng

⌋
, j ∈ G. (81)

Iterative refinement. Repeat the following steps until the label change falls below a
threshold. Alternating these steps until convergence yields a classifier µκ that both partitions
the state space and respects the required ordering. Such a µκ(g | s) can provide information
on whether a state is a milestone or bottleneck.

• Learning step: fit a classifier µκ(g | s) by cross-entropy on the current labels:

L(κ) = E(s,g)∼D
[
− logµκ(g | s)

]
. (82)

• Inference step: enforce the trajectory order 1 ≺ 2 ≺ . . . ≺ ng with Dynamic Time
Warping8 (Müller, 2007) over the posterior sequence ⟨µκ(· | st)⟩.

Potential function and intrinsic reward. The most probable class defines a potential
Φκ(s) = arg maxg µκ(g | s), and an intrinsic reward r′ can be defined as:

r′(s, a, s′) = γ Φκ(s′)− Φκ(s), (83)

where γ is the discount factor of the MDP.

Learning schedule. The policy πθ is first initialized through behaviour cloning, after
which reinforcement learning proceeds with the augmented reward r+r′. This phase exploits
subgoal guidance to supply dense progress signals without additional expert interaction and
still preserves the original optimum.

As another example, Relay Policy Learning (RPL) (Gupta et al., 2019) relabels demon-
stration trajectories τ = (s0, a0, . . . , sT) with relay subgoals, producing two goal-augmented
datasets:

Dℓ =
{

(st, at, gℓ)
∣∣ gℓ = st+w, 0 ≤ t < T, 1 ≤ w ≤Wℓ, t+ w ≤ T

}
, (84)

Dh =
{

(st, gℓ, gh)
∣∣ gℓ = st+min(Wℓ,w), gh = st+w, 0 ≤ t < T, 1 ≤ w ≤Wh, t+ w ≤ T

}
.

(85)

Dℓ offers short-horizon examples (subgoal horizon ≤Wℓ) for training a low-level controller
πθ(a | s, gℓ) to reach nearby states, whereas Dh pairs each long-horizon target gh (up to

8. An algorithm that aligns two sequences by allowing non-uniform time shifts, so that similar patterns are
matched even if they occur at different timesteps or speeds.

53

Wh steps away) with a feasible intermediate subgoal gℓ, enabling hierarchical planning by a
high-level goal-setter µκ(gℓ | s, gh). The imitation objective is:

max
κ,θ

E(s,a,gℓ)∼Dℓ

[
log πθ(a | s, gℓ)

]
+ E(s,g′ℓ,gh)∼Dh

[
logµκ(g′ℓ | s, gh)

]
,

with Wℓ = 30 and Wh = 260 in all experiments of RPL. During execution, every Wℓ steps
the high-level policy samples a new subgoal gℓ ∼ µκ(· | s, gh) and the low-level controller
tracks it step-by-step until the next subgoal is issued.

5.2.1 Benefits and Opportunities

Credit Assignment. Subgoal relabeling decomposes complex tasks into manageable
intermediate objectives by highlighting which actions contribute to reaching the final goal.

Paul et al. (2019) address credit assignment by constructing an intrinsic reward based on a
subgoal policy µκ(g | s), which identifies a state’s progress toward a final goal. This classifier
is trained via an EM-style procedure that enforces an ordering constraint over subgoal
indices, ensuring that states later in a demonstration receive higher labels. The resulting
potential function, Φκ(s) = arg maxg µκ(g | s), induces a shaped reward (Equation 83) which
provides dense feedback aligned with behavioural progress. This intrinsic signal facilitates
temporal credit assignment by rewarding transitions that advance the agent through the
learned subgoal structure, even when extrinsic rewards are sparse or delayed.

Alternatively, RPL (Gupta et al., 2019) addresses the credit assignment challenge from
sparse, delayed rewards by relabeling demonstrations with overlapping sliding-window sub-
goals. It trains a goal-conditioned low-level policy to reach short-horizon targets, while a high-
level policy selects subgoals. This hierarchical structure ensures that each low-level episode
ends with an intrinsic success signal. As a result, external rewards propagate after at most
one window. This transforms the long-horizon problem into a sequence of locally supervised
updates, enabling faster and more stable credit assignment than flat or single-level baselines.

Similarly, Park et al. (2024a) relabel subgoals as the state st+k that lies exactly k steps
ahead of the current state st. A high-level policy, µκ

(
st+k | st, g

)
, proposes such waypoints

conditioned on the ultimate goal g, while a low-level policy, πθ
(
at | st, st+k

)
, outputs

primitive actions that move the agent toward the subgoal. Both policies are optimized
via a shared goal-conditioned value function Vψ: µκ maximizes Vψ(st+k, g), whereas πθ
maximizes Vψ(st+1, st+k). Specifically, µκ is trained to choose subgoals st+k that maximize
Vψ(st+k, g), while πθ is trained to select actions that make the next state st+1 have high
value Vψ(st+1, st+k) relative to the current subgoal. Because different subgoals induce much
larger variations in Vψ than individual actions, the high-level receives a more reliable learning
signal, and since πθ queries Vψ only for nearby states where estimates are more accurate, the
entire hierarchy is less susceptible to noise and approximation errors in the value function,
resulting in a more robust policy and credit assignment.

Interpretability. Identifying subgoals within the offline dataset can provide insights
into understanding the decision-making process. For example, Paul et al. (2019) present
visualizations of the state space in robotic navigation tasks, such as AntMaze and AntTar-
get, demonstrating that the state space can be structurally partitioned using discovered
subgoals. The structural decomposition is intuitively meaningful to humans, facilitating
better understanding and verification.

54

Discovering Temporal Structure: An Overview of Hierarchical RL

Opportunities for Research.

• Enhancing interpretability of decision making with interpretable subgoals.
Although positive empirical result is shown in (Paul et al., 2019), current offline
relabeling schemes select subgoals with limited transparency into why particular states
are chosen or how they steer the learned policy. Embedding interpretability or alignment
objectives, such as attributing subgoal selection to human-understandable criteria,
would not only clarify the decision rationale, but also foster trust and diagnosability.

• Scaling to complex observations by identifying latent subgoals. Researchers
can extend offline subgoal relabeling to environments with high-dimensional inputs,
such as images, language, or tactile data, with Park et al. (2024a) as an example. To do
so, methods could identify subgoal representations in some latent space that pinpoint
meaningful milestones within these spaces. By focusing on compact embeddings, rela-
beling can remain effective even when raw observations are noisy, partial, or multimodal.

6. Discovery with Foundation Models

Agents that learn skills from scratch through environment interactions are directly exposed
to the inherent complexities of the domains in which they operate. Such agents must learn
from their stream of experience how to organize the collected data into meaningful chunks
in order to derive a useful set of skills. To mitigate these challenges, we can instead build
on prior knowledge contained in large pretrained models to guide the discovery of useful
skills in complex environments. The starting assumption for such methods is that pretrained
models contain knowledge about the environment of interest. Although this assumption
may not always hold, it is likely applicable to many domains of interest and will grow as the
training paradigm of LLMs expands in scope.

Simultaneously, an interesting feature of LLM-based methods is that, as these large
models are based on human priors and are instantiated through natural language, the set
of behaviours will generally be more interpretable. In fact, leveraging language, without
using LLMs, has produced a prolific line of work (Shu et al., 2018; Bahdanau et al., 2018;
Fu et al., 2019; Jiang et al., 2019; Colas et al., 2020a,b; Akakzia et al., 2021).9 These works
underscore, amongst other features, the compositional nature of language. This quality
makes it a particularly useful space to represent a variety of goals.

It is therefore natural to consider LLMs for HRL as they provide both useful inductive
biases from pre-training on human data and a meaningful abstraction space through natural
language. This connection is reinforced by the fact that LLMs, by their very nature,
can represent goal-conditioned policies, where goals are specified linguistically.

As such, many recent works leverage LLMs to decompose tasks into subtasks (Pignatelli
et al., 2024; Yang et al., 2024; Wang et al., 2024c), an operation done according to their
pre-existing understanding of the task’s underlying structure. Another perspective is to
use LLMs as a measure of interestingness to propose a curriculum of goals and tasks in
open-ended domains (Colas et al., 2023; Zhang et al., 2024; Faldor et al., 2025; Wang et al.,
2024b; Zala et al., 2024). The key to converting an LLM’s latent knowledge into a functional
agent lies in efficiently learning the options required to execute the decomposed goals.

9. For an in-depth review of the use of language in RL, please refer to the work by Luketina et al. (2019).

55

In this section, we investigate four families of methods that propose solutions to this
problem. The first family consists of methods using embeddings from large pretrained
models as representations from which option rewards are defined. Next, we present methods
that use large pretrained models to provide feedback, in the form of rewards or preferences,
for learning different skills. Building on the code generation capabilities of large models, we
present two families of methods that write code to either craft reward functions to learn
specific behaviours. Finally, as LLMs can be seen as goal-conditioned policies, we cover
methods that use them directly to specify goals and achieve them.

Not all the presented methods in this section are hierarchical by nature. For example,
some papers focus on defining rewards or policies for a set of tasks, rather than a set of
options. However, given the promising potential for such methods to drive progress for HRL,
we include them as well.

6.1 Embedding Similarity

As foundation models are trained on Internet-scale datasets, their embeddings contain useful
structure for a variety of tasks. Such embeddings can be the result of contrastive pretraining
on image and text pairs, for instance, the Contrastive Language-Image Pretraining (CLIP)
encoder (Radford et al., 2021). Let wi ∈ Rd represent the normalized feature vector
(embedding) generated by the image encoder for the i-th image, Ii. Similarly, let uj ∈ Rd
be the normalized feature vector generated by the text encoder for the j-th text, Tj . The
similarity between image i and text j is computed using the cosine similarity (which simplifies
to the dot product for normalized vectors):

Cij = w⊤
i uj . (86)

These embeddings can then be used to represent image or language goals and define reward
functions by taking the cosine similarity between the embeddings of the goal and the
observation in which the agent is currently situated,

rg(s) = w(s)⊤u(g). (87)

This reward function is then maximized by a goal-conditioned policy interacting with an
environment to learn behaviours that achieve the specified goals.

To obtain these vectors, the objective is formulated as minimizing a cross-entropy loss,
applied symmetrically for both image-to-text and text-to-image prediction tasks. The loss
for predicting the correct text caption for a given image i (considering all N text captions
in the batch) is defined as:

Limagei = − log
exp(cii/e)∑N
j=1 exp(cij/e)

, (88)

where e is the temperature hyperparameter. The loss for predicting the correct image for a
given text caption i (considering all N images in the batch) is:

Ltexti = − log
exp(cii/e)∑N
j=1 exp(cji/e)

. (89)

56

Discovering Temporal Structure: An Overview of Hierarchical RL

“Shear sheep to
obtain wool”

MineCLIP
Correlation = 0.95

RGB Voxel

GPS Inventory

Observation space

Move Attack

Cam Equip

Action space

MineDojo Sim

<latexit sha1_base64="ca4T8nSUbwsT4Z+NGlf9Q5N3EkE=">AAAB7XicdVDLSgMxFM3UV62vqks3wSK4GmbKdGp3RTcuK9hpoR1KJs20sZlkSDJCGfoPblwo4tb/ceffmD4EFT0kcDjnXu69J0oZVdpxPqzC2vrG5lZxu7Szu7d/UD48CpTIJCZtLJiQ3QgpwignbU01I91UEpREjHSiydXc79wTqajgt3qakjBBI05jipE2UtBPx3QQDMoVx676NfOgY3ue59erhri1huc3oGs7C1TACq1B+b0/FDhLCNeYIaV6rpPqMEdSU8zIrNTPFEkRnqAR6RnKUUJUmC+2ncEzowxhLKT5XMOF+r0jR4lS0yQylQnSY/Xbm4t/eb1MxxdhTnmaacLxclCcMagFnJ8Oh1QSrNnUEIQlNbtCPEYSYW0CKpkQvi6F/5Ogaru+7d14leblKo4iOAGn4By4oA6a4Bq0QBtgcAcewBN4toT1aL1Yr8vSgrXqOQY/YL19AvPQj2g=</latexit>

�V

Stack the last 16 RGB frames
<latexit sha1_base64="RalrFwoax4lhGLaFvab2Gtps3C0=">AAAB7XicdVDLSgMxFL3js9ZX1aWbYBFcDTNlOrW7ohvdVbAPaIeSSTNtbGYyJBmhlP6DGxeKuPV/3Pk3pg9BRQ8JHM65l3vvCVPOlHacD2tldW19YzO3ld/e2d3bLxwcNpXIJKENIriQ7RAryllCG5ppTtuppDgOOW2Fo8uZ37qnUjGR3OpxSoMYDxIWMYK1kZrddMh6171C0bFLftk85Nie5/mVkiFuuer5VeTazhxFWKLeK7x3+4JkMU004VipjuukOphgqRnhdJrvZoqmmIzwgHYMTXBMVTCZbztFp0bpo0hI8xON5ur3jgmOlRrHoamMsR6q395M/MvrZDo6DyYsSTNNE7IYFGUcaYFmp6M+k5RoPjYEE8nMrogMscREm4DyJoSvS9H/pFmyXd/2brxi7WIZRw6O4QTOwIUK1OAK6tAAAnfwAE/wbAnr0XqxXhelK9ay5wh+wHr7BOAcj1s=</latexit>

�I

Ti
m
e

<latexit sha1_base64="RalrFwoax4lhGLaFvab2Gtps3C0=">AAAB7XicdVDLSgMxFL3js9ZX1aWbYBFcDTNlOrW7ohvdVbAPaIeSSTNtbGYyJBmhlP6DGxeKuPV/3Pk3pg9BRQ8JHM65l3vvCVPOlHacD2tldW19YzO3ld/e2d3bLxwcNpXIJKENIriQ7RAryllCG5ppTtuppDgOOW2Fo8uZ37qnUjGR3OpxSoMYDxIWMYK1kZrddMh6171C0bFLftk85Nie5/mVkiFuuer5VeTazhxFWKLeK7x3+4JkMU004VipjuukOphgqRnhdJrvZoqmmIzwgHYMTXBMVTCZbztFp0bpo0hI8xON5ur3jgmOlRrHoamMsR6q395M/MvrZDo6DyYsSTNNE7IYFGUcaYFmp6M+k5RoPjYEE8nMrogMscREm4DyJoSvS9H/pFmyXd/2brxi7WIZRw6O4QTOwIUK1OAK6tAAAnfwAE/wbAnr0XqxXhelK9ay5wh+wHr7BOAcj1s=</latexit>

�I

<latexit sha1_base64="RalrFwoax4lhGLaFvab2Gtps3C0=">AAAB7XicdVDLSgMxFL3js9ZX1aWbYBFcDTNlOrW7ohvdVbAPaIeSSTNtbGYyJBmhlP6DGxeKuPV/3Pk3pg9BRQ8JHM65l3vvCVPOlHacD2tldW19YzO3ld/e2d3bLxwcNpXIJKENIriQ7RAryllCG5ppTtuppDgOOW2Fo8uZ37qnUjGR3OpxSoMYDxIWMYK1kZrddMh6171C0bFLftk85Nie5/mVkiFuuer5VeTazhxFWKLeK7x3+4JkMU004VipjuukOphgqRnhdJrvZoqmmIzwgHYMTXBMVTCZbztFp0bpo0hI8xON5ur3jgmOlRrHoamMsR6q395M/MvrZDo6DyYsSTNNE7IYFGUcaYFmp6M+k5RoPjYEE8nMrogMscREm4DyJoSvS9H/pFmyXd/2brxi7WIZRw6O4QTOwIUK1OAK6tAAAnfwAE/wbAnr0XqxXhelK9ay5wh+wHr7BOAcj1s=</latexit>

�I

<latexit sha1_base64="RalrFwoax4lhGLaFvab2Gtps3C0=">AAAB7XicdVDLSgMxFL3js9ZX1aWbYBFcDTNlOrW7ohvdVbAPaIeSSTNtbGYyJBmhlP6DGxeKuPV/3Pk3pg9BRQ8JHM65l3vvCVPOlHacD2tldW19YzO3ld/e2d3bLxwcNpXIJKENIriQ7RAryllCG5ppTtuppDgOOW2Fo8uZ37qnUjGR3OpxSoMYDxIWMYK1kZrddMh6171C0bFLftk85Nie5/mVkiFuuer5VeTazhxFWKLeK7x3+4JkMU004VipjuukOphgqRnhdJrvZoqmmIzwgHYMTXBMVTCZbztFp0bpo0hI8xON5ur3jgmOlRrHoamMsR6q395M/MvrZDo6DyYsSTNNE7IYFGUcaYFmp6M+k5RoPjYEE8nMrogMscREm4DyJoSvS9H/pFmyXd/2brxi7WIZRw6O4QTOwIUK1OAK6tAAAnfwAE/wbAnr0XqxXhelK9ay5wh+wHr7BOAcj1s=</latexit>

�I
Aggregate

Video
Feature

Per-frame
Feature

Figure 12: Illustration of the method of embedding similarity for defining option reward func-
tions. Visual observations and language goal descriptions are converted into embeddings, and
their similarity (e.g., via MineCLIP) is used to define reward functions for goal-conditioned
policies. In this example, the agent is rewarded for successfully performing sheep shearing.
Figure taken from Fan et al. (2022).

Fan et al. (2022) instantiate this idea in the open-ended Minecraft game (Johnson et al.,
2016; Kanervisto et al., 2021). To do so, they introduce the MineDojo framework. The
authors collect a large dataset of Minecraft gameplay for training a reward function that
would map textual goals and a sequence of observations to a scalar value indicating their
similarity. The language goal is encoded through the pretrained CLIP encoder (Radford
et al., 2021) whereas the video encoder is composed of an image encoder and a temporal
aggregator that accumulates 16 consecutive frames from the video. This leads to the following
non-Markovian reward,

rg(st−16:t) = w(st−16:t)
⊤u(g). (90)

The authors train their reward model, called MineCLIP, on the aforementioned dataset
using the same losses as in Equation 88 and 89. This resulting reward function excels at
capturing correct behaviour on a wide collection of tasks, such as “Combat zombie”. Lifshitz
et al. (2023) build on this work to obtain an instruction-following agent in Minecraft, where
language instructions represent goals.

CLIP-based methods have also been applied to robotics. Xiao et al. (2022) fine-tune the
CLIP model on a small dataset of robotic tasks and then utilize the model to label, using
a set of predefined annotations, a much larger dataset of unlabeled observations. Using
this larger dataset, the authors then train language-conditioned policies to achieve goals
through imitation learning. Further improving the sample efficiency of embedding-based
methods, Palo et al. (2023) show the possibility of efficiently fine-tuning the same CLIP
model on as little as 1000 data points. Avoiding the costly operation of fine-tuning large
pretrained models, Cui et al. (2022) investigate the prospect of using the CLIP model in a
zero-shot fashion for defining goal-conditioned policies, obtaining good results on robotics
tasks. Similarly, Rocamonde et al. (2024) leverage a fixed pretrained CLIP model and study
the scaling effect of such models on the resulting RL performance.

57

6.1.1 Benefits and Opportunities

Exploration. Methods building on embedding-based rewards empirically show improved
exploration in complex tasks. In particular, in open-ended environments such as Minecraft,
the dense nature of the reward functions obtained from embedding similarity significantly
helps with exploration, leading to sophisticated behaviour (Fan et al., 2022; Lifshitz et al.,
2023). The dense nature of such reward functions is also particularly useful for approaches
studying the challenge of robotics (Xiao et al., 2022; Fu et al., 2024) and web navigation
(Baumli et al., 2023). Du et al. (2023c) investigate how guiding exploration with an LLM
during a pretraining phase can help an agent’s downstream performance. To do so, the
authors introduce the idea of restricting the reward function through a similar threshold,

rg,T (st, at, st+1) =

{
rg(st, at, st+1) if > T,

0 otherwise ,
(91)

where T , the threshold, is a hyperparameter. This reduces the noise of possibly imperfect
embeddings used to define the reward function, further improving exploration.

Transfer. Another important benefit from LLM-based approaches to skill discovery stems
from the compositional nature of language, which easily allows for specifying a variety of
goals. For example, Du et al. (2023a) study how pretraining the agent on self-generated
goals, where good behaviour is rewarded by the embeddings of an LLM, can lead to improved
downstream performance on a set of complex goals. To encourage reaching a diversity of
goals that will transfer well, the authors additionally prompt the LLM to generate k goals
and reward the agent on the goal with the greatest reward,

rgmax = max
i=1...k

rgi,T (st, at, st+1). (92)

Similar generalization to different language-conditioned goals is reported by Lifshitz et al.
(2023). Instead of directly training with a goal-conditioned model, Mahmoudieh et al. (2022)
efficiently train a discrete set of smaller policies, used as a basis of behaviour. This is then
distilled into a single language-conditioned neural network, which can better generalize on a
larger spectrum of behaviours than the basis.

Opportunities for Research.

• Understanding the trade-offs of different embeddings. An important question
when working with embedding similarity measures is with respect to the origin of
the embeddings themselves. Most of the presented papers rely on CLIP, but other
embeddings have been used, such as the Bidirectional Encoder Representations (BERT)
embeddings (Devlin et al., 2019) and the Reusable Representations for Robot Manipu-
lation (R3M) Adeniji et al. (2023), which is pretrained on the Ego4D dataset (Grauman
et al., 2021) through a combination of contrastive and video-language alignment losses.
When considering a wide range of tasks, it is not clear which model shows greater
performance, or is more amenable to fine-tuning.

• Expanding beyond text-image similarity. Most works compute the similarity
between a language goal instruction and the current observation. Sontakke et al. (2023)

58

Discovering Temporal Structure: An Overview of Hierarchical RL

instead compute the similarity between an agent attempting to reach a goal and a
demonstration of such a successful behaviour. Moreover, contrary to most works, the
authors compute the reward at the trajectory level, that is, the reward is only given
at the end of an interaction. The authors show that their approach can be applied
even in the case where the demonstration is done by a human physically completing
the task, rather than teleoperating a robot, which presents greater opportunities for
generalization.

6.2 Providing Feedback

Leveraging the embeddings of foundation models to measure the similarity between a desired
goal and the current state places significant emphasis on the quality of the embeddings
themselves. One way to avoid this is by considering the auto-regressive nature of LLMs,
which allows for chain-of-thought (Wei et al., 2022) and in-context learning (Brown et al.,
2020). Such capabilities can be particularly useful to define option reward functions. This
can be done by taking as input a state, or a trajectory, as well as a goal description, and
using LLMs to output a scalar feedback, representing the degree of success with respect to
the goal. Alternatively, preferences can be elicited from an LLM over pairs of states that are
then converted into a reward model through preference-based learning (Wirth et al., 2017).

Direct Reward

To obtain a success measure, Du et al. (2023a) combine a sequence of observations from the
environment together with a question such as “Did the agent successfully place the cactus
left of the sofa?” to query a multimodal model (Alayrac et al., 2022) for a binary answer.
Formaly, LLM : S × G → Y where the goal g is represented by the question and y ∈ {0, 1}.
The goal reward is then defined through this binary output,

rg(s) = y = LLM(s, g). (93)

Such reward functions are evaluated on a diversity of domains: embodied simulations
(Abramson et al., 2021), robotic manipulation with a 6DoF device, and human interactions
in the Ego4D dataset (Grauman et al., 2021). To obtain accurate success measures, the
authors have to initially fine-tune the model on a large dataset of expert interactions. Instead
of costly model updates, Kwon et al. (2023a) propose to replace weight updates with few-shot
in-context examples, building on improved learning capabilities in the employed LLM. Pan
et al. (2024) show that measures of success obtained from a multimodal LLM have high
agreement (up to 92.9%) with oracle evaluators. Such results are reported on WebArena
(Zhou et al., 2024) and Android-in-the-Wild (Rawles et al., 2023) benchmarks. Leveraging
the strong performance of LLMs as direct reward modelers, Bai et al. (2024) successfully
train robust RL policies on a variety of goals derived from changing web interfaces.

Eliciting Preferences

When an LLM’s output directly functions as the reward signal, it often lacks the granularity
to effectively measure the relative merit of a specific state against the full spectrum of
alternatives. Instead, we can leverage the idea of reinforcement learning from AI feedback

59

"You kill the kobold!"

"$ - 4 gold pieces.""It's a wall."

"The door is closed."

Large Language Model
Reward

Model

Agent

Dataset of captioned

observations

DATASET ANNOTATION REWARD TRAINING RL TRAINING

Dataset of

annotated pairs

Environment

Figure 13: Learning option rewards from AI feedback proceeds in three phases. In the first
phase, an LLM is conditioned on a behaviour description and queried for preferences over
pairs of observations, which are stored with their preference labels within a dataset. In the
second phase, the preferences are distilled into an observation-based scalar reward function.
Finally, an agent is trained interactively with RL, receiving a scalar signal at every step
through the reward function extracted from the preferences.

(Bai et al., 2022), introduced in the context of fine-tuning large models and relying on
preference-based learning (Wirth et al., 2017; Thomaz et al., 2006). Building on this idea,
Klissarov et al. (2024) introduce the Motif algorithm, which leverages an LLM’s feedback
to guide an agent acting in the open-ended NetHack environment (Küttler et al., 2020).
Observations from the environment are presented to an LLM before querying, using chain-
of-thought prompting, to provide a preference over which observation is more desirable for a
certain goal.

Formally, the annotation function is given by LLM : S×S×G→ F, where S is the space of
states, where G is the space of goals defined through natural language, and F = {1, 2,∅} is a
space of preferences for either the first, the second, or none of the captions. These preferences
are then distilled into a reward function through the Bradley-Terry model (Bradley and
Terry, 1952) and given to an RL agent interacting with the environment,

L(ν) = −E(s1,s2,g,y)∼Dpref

[
1[y = 1] logPν [s1 ≻ s2|g] + 1[y = 2] logPν [s2 ≻ s1|g]

+ 1[y = ∅] log
(√

Pν [s1 ≻ s2|g] · Pν [s2 ≻ s1|g]
)]

,

(94)

where Pν [sa ≻ sb|g] = er
g
ν (sa)

er
g
ν (sa)+er

g
ν (sb)

is the probability of preferring a state sa to another sb

given a goal g; rgν is the reward defined with respect to the goal specified in the LLM’s prompt.
Through the process of comparing states to alternatives, eliciting LLM preferences, or

receiving AI feedback, nuanced and fine-grained reward functions can be provided. Such

60

Discovering Temporal Structure: An Overview of Hierarchical RL

reward functions can also be understood as process-based rewards (Uesato et al., 2023;
Lightman et al., 2023). Klissarov et al. (2024) leverage this characteristic to learn a set
of policies that exhibit a certain behaviour across time, such as preferring generally more
cautious strategies when exploring. This is in contrast to the work on LLM as direct reward
modelers, which typically define rewards for reaching goal states as binary success detectors
(Du et al., 2023a). As illustrated in the MaestroMotif algorithm (Klissarov et al., 2025a), the
flexibility offered by AI feedback is key in designing HRL agents capable of subtle behaviours
and fast adaptation. Adding to the generality of AI feedback, Wang et al. (2024a) investigate
the resulting policies across a range of continuous control domains using pixel observations
and a multimodal LLM. Their findings show that reward functions generated through AI
feedback yield more performant policies compared to embedding similarity approaches or
methods that directly query the LLM for scalar rewards.

6.2.1 Benefits and Opportunities

Exploration. Klissarov et al. (2024) illustrate the potential of AI feedback-based rewards
to significantly improve exploration on the complex open-ended world of NetHack. The
obtained reward function is shown to be naturally dense and encodes a variety of important
milestones, such as unlocking doors or picking up items. The authors hypothesize that, by
querying the model on thousands of pairs of observations from the environment, the LLM’s
common sense reasoning and domain knowledge are distilled into a useful reward function.

Credit Assignment. Wang et al. (2024a) report that the reward obtained from preferences
monotonically increases as the agent advances towards the goal, naturally assigning credit to
states in between the starting state and the goal. Klissarov et al. (2025b) further study the
dense nature of such reward functions and reveal a strong correlation with value functions
obtained at the end of training. As such, value functions have been trained to propagate
information through temporal difference learning (Sutton, 1988), the authors argue that this
high correlation is another indication that the reward functions based on LLM feedback are
useful for credit assignment. An equivalent perspective is that the resulting dense reward
can be seen as a form of reward redistribution (Arjona-Medina et al., 2018; Hung et al., 2019;
Klissarov and Precup, 2020; Ni et al., 2023), which is an established method for improving
credit assignment.

Transfer. In MaestroMotif, Klissarov et al. (2025a) show how a set of semantically
meaningful skills can be easily re-composed zero-shot to adapt to complex new tasks.
Leveraging the code generation abilities of LLMs, they propose a neuro-symbolic approach
where skill policies are neural networks trained by reinforcement learning, and the high-level
policy is defined through code. The authors then use the in-context learning abilities of LLMs
to re-compose the skills, significantly outperforming baselines that are trained specifically
on each of the tasks. Their approach highlights how the compositional nature of language
can be particularly helpful when combined with a set of linguistically-defined skills, leading
to an easily promptable agent.

Opportunities for Research.

• Simplifying the reward learning process. Despite the strength of preference-based
methods for crafting rewards through LLMs, they are more complex than directly

61

querying for a reward signal. Is there a way to leverage the improved exploration
and credit assignment without the additional complexity? Is an existing dataset
of observations needed for eliciting useful preferences? Zheng et al. (2024) provide
an initial answer to these questions by comparing different ways in which the LLM
feedback is leveraged, for example, by using it as a label for a classification loss. Their
results show surprisingly strong performance of some of these simpler baselines, even
when querying the LLM with online interactions.

6.3 Reward as Code

Instead of relying on LLMs to evaluate good and bad behaviour from observations, it is
possible to rely on their code generation abilities to craft helpful rewards. In this line of
work, a goal description is given to the LLM as input, as well as additional information from
the environment,

codeg ∼ LLM(g, info), (95)

rg(s) = codeg(s). (96)

This additional information often constitutes important symbolic information, such as low-
level features, that is used to define the code. This code is then executed alongside the
environment simulation to generate a reward for every state s. Xie et al. (2024) explore the
possibility of leveraging an LLM’s capacity to code reward functions for robotics tasks. The
authors provide the LLM with additional information in the form of a symbolic representation
of the environment (e.g., Python classes describing each object and methods to access specific
information about it). Furthermore, the authors provide the LLM with helpful functions
from different packages (such as quaternion computation in NumPy) to be used for reward
generation. Finally, their algorithms also allow for integrating human feedback. Yu et al.
(2023) similarly investigate how LLMs can generate reward functions for learning robotics
skills. In their approach, an LLM takes as input a detailed language description of a goal
and instantiates a set of reward functions.

Another notable work is that of Ma et al. (2024), which presents Evolution-driven
Universal REward Kit for Agent (EUREKA). They provide a task description to the LLM,
such as “make the pen spin to a target orientation”, and proceed to do an evolutionary
search on the reward function space. This process is supported through additional context
given to the LLM in the form of selected parts of the source code of the environment. For
each candidate reward function that the LLM generates, a complete learning run through
massively distributed RL experiments using IsaacGym (Makoviychuk et al., 2021). The
most promising reward function candidates are then retained and given to the LLM together
with the learning statistics, such that the model performs in-context learning and suggests a
new batch of candidates.

6.3.1 Benefits and Opportunities

Transfer. The ability to efficiently generate reward functions, without human supervision,
is particularly important for transfer. For example, Ma et al. (2024) achieve super-human
level reward design for complex robotics skills across a variety of embodiments. In the

62

Discovering Temporal Structure: An Overview of Hierarchical RL

 Dense reward function
 def compute_reward(self, action):
 ...
 # EE approach chair

 reward += -dist_ee_to_chair

 # Keep chair standing

 chair_tilt = np.arccos(z_axis_chair[2])

 # Stage reward

 if chair_tilt < 0.2 * np.pi:

 if dist_ee_to_chair < 0.1:

 stage_reward += 2

 ...

 else:

 stage_reward = -5

 return reward

Goal: push the chair to the marked position

GPT-4 /
Codex ...

RL training

 Environment description
 class BaseEnv:

 self.chair: ArticulateObject

 self.robot: DualArmPanda

 class ArticulateObject:

 self.pose: ObjectPose

 # get the point cloud of the object

 def get_pcd(self) -> np.ndarray[(N,3)]

 class DualArmPanda:

 # 3D positions of 4 gripper fingers

 self.ee_coords -> np.ndarray[(4,3)]

 ...

User

Rollout

 EnvironmentExpert abstraction

Policy

Feedback: keep the chair standing

Figure 14: Defining reward functions as code requires access to a symbolic representation
of the environment. This is done through an expert abstraction function that represents
the environment as a hierarchy of Pythonic classes. The user instruction describes, in
natural language, the goal to be achieved. The agent then interacts with the environment
to maximize this symbolic reward function. It is also possible to include user feedback that
summarizes the failure modes of the current reward code. Figure taken from Xie et al. (2024).

domain of Minecraft, Li et al. (2023) show how reward functions as code can be used to solve
a variety of long-horizon goals given access to the symbolic features from the environment.

Opportunities for Research.

• Going beyond symbolic representations. Generating a reward function as code
is a powerful paradigm: it avoids the need to query the LLM during the RL phase
and does not require learning a parametric reward model. However, by definition,
such an approach requires access to symbolic features from the domain of interest,
which can be limiting if this involves real-world interactions with humans. Venuto
et al. (2024) propose to query the LLM to craft its own symbolic representation from
high-dimensional observations, similar to the work by Palo and Johns (2024). These
representations are then used to define reward functions in code. However, their
approach requires access to expert demonstrations, which future work could alleviate.

6.4 Directly Modeling the Policy

So far, we have covered methods that leverage foundation models to define goal reward
functions through a variety of strategies, such that goal-conditioned policies can be obtained
by maximizing the reward functions. Alternatively, there exists a line of work that uses
LLMs to directly model the policy itself, where goals are defined through prompts and
conditioning the LLM on them, effectively serving as goal-conditioned policies. In this
setting, the LLM is oftentimes updated through in-context learning (Wei et al., 2022) to
obtain policy improvements, bypassing the need for performing parameter updates, which
can be costly and time-consuming. Building on the code generation capabilities of LLMs,

63

Mine Wood Log

Make Crafting Table

Craft Stone Sword

Craft Shield

Make Furnace

Cook Steak

Combat Zombie Mine Wood Log

Make Crafting Table

Combat

Zombie

Mine Diamond

New

Task

Code as
Actions

Refine ProgramEnv Feedback

Execution Errors

Update

Exploration

Progress

Skill

Retrieval

Add New Skill

Automatic Curriculum Iterative Prompting Mechanism Skill Library

Environment Self-Verification

Figure 15: An LLM is conditioned on a goal description and generates snippets of code which
instantiate skill policies. When interacting in multimodal environments, such as Minecraft,
a bridge between this symbolic skill policy representation and the high-dimensional nature
of the environment has to be present. Under such a setting, an LLM can act as an HRL
agent, efficiently achieving complex goals. Figure taken from Wang et al. (2023a).

Liang et al. (2022) propose to define robotic skills as policies in the form of Python code,

codeg ∼ LLM(g), (97)

a ∼ codeg(s), (98)

where the goal-conditioned codeg acts as a the goal-conditioned policy π(a|s, g). They
show that the LLM can re-compose calls to an API such that a new code policy achieves a
specific goal. In particular, they propose hierarchical code-generation that recursively defines
undefined functions from existing functions, leading to strong performance on robotics tasks.
Kwon et al. (2023b) extend this work, removing assumptions such as providing in-context
examples or requiring the LLM to predict end-effector poses. In the complex open-ended
environment of Minecraft, Wang et al. (2023a) propose Voyager, a method leveraging an
LLM to continually expand a library of skills. Such skills are crafted by prompting the LLM
to define specific behaviours in code, building on an existing JavaScript API (PrismarineJS,
2013) that allows for grounding the generated code in the multimodality of Minecraft.
Voyager further uses ideas of auto-curriculum and self-reflection to update the set of skills,
learn new ones, or define their composition for a given task.

Another line of work directly queries the LLM for actions by giving as context the natural
language description of a goal and the current state,

a ∼ LLM(s, g). (99)

In these settings, LLMs output the low-level actions in an environment, effectively as a
goal-conditioned policy. This particular instantiation highlights that LLMs are already
particularly effective HRL agents that can be conditioned on goal descriptions. The current

64

Discovering Temporal Structure: An Overview of Hierarchical RL

focus of such models is on computer-based tasks (Anthropic, 2024; OpenAI, 2025). Despite
the appeal of generalizing zero-shot to new language instructions, current LLMs are still
quite limited in successfully performing long-horizon tasks by directly selecting low-level
actions (OpenAI, 2024; Zhou et al., 2024).

6.4.1 Benefits and Opportunities

Exploration. By relying on an LLM’s common sense, prior knowledge, and possible
API libraries, researchers have shown that agents explore their environment significantly
better. By directly modeling the policy, it is possible to condition the LLM on a wider
variety of goals and find well-performing policies for a subset of easier goals. This allows for
making progress on very hard exploration problems by breaking the task into achievable
milestones. Examples include collecting diamonds in Minecraft (Wang et al., 2023a) or
intricate web navigation tasks (Zhou et al., 2024). By conditioning an LLM on language and
directly outputting a sequence of actions to achieve tasks, agents achieve tasks that would
be extremely difficult, or even impossible, to learn by maximizing a reward function.

Transfer. Directly acting with an LLM greatly simplifies how users can leverage the
compositional nature of language. For example, the same LLM can be directly conditioned
on a variety of computer interaction tasks and achieve them zero-shot (Anthropic, 2024).
Alternatively, a library of skills can be re-composed through in-context learning to craft new
skills (Wang et al., 2023a).

Opportunities for Research.

• Lifting restrictions on the action space and action frequency. The prospect of
directly generating a wide spectrum of behaviours simply by querying a large pretrained
model is particularly appealing. It essentially encompasses the fundamental promise of
HRL for fast adaptation thanks to the compositional nature of language. However, it
also poses interesting challenges. For example, would such a model be restricted to a
certain action space, or is there a way to efficiently adapt to a variety of embodiments?
Are there limitations in terms of action frequencies? The domain of computer navigation
is especially promising as grounding an LLM in the action space of computers would
allow a model to achieve many economically useful tasks. However, the same model
could not be used to control an embodied robot, unless fine-tuning is performed,
which for large models is costly. A varying action space also raises the necessity to
co-fine-tune the model to avoid catastrophic forgetting (Brohan et al., 2023).

7. Using Temporally Abstract Behaviour

In the previous sections, we presented a variety of approaches addressing the option discovery
problem. This naturally leads to the question: how might an agent effectively use this set of
behaviours to inform decision-making? In this section, we outline a spectrum of possible
ways of integrating options and discuss different learning strategies.

7.1 Different Ways of Deliberating over Options

65

Time

Co
m

pu
ta

tio
n

Call-And-Return
Flexible Deliberation

Figure 16: Depiction of the distribution of
computation over time for the standard call-
and-return model of execution. We assume
that high-level decisions incur a greater com-
putation cost compared to the low-level ones.
This is illustrated in the spikes that character-
ize the call-and-return model. We also present
a hypothetical model that would distribute
computation over time in a more flexible way.

Let us consider the most common way of
integrating options within an agent: the
call-and-return model. In this model, a sin-
gle option is chosen at every high-level de-
cision point, and this option selects actions
in the environment until its termination or
interruption. This process repeats, and the
high-level policy selects again amongst the
available options. This model is by far the
most predominant one across all HRL ap-
proaches we have covered in this work and
was also used to give a simplified presenta-
tion of HRL itself in Figure 4. The call-and-
return model presents a straightforward way
to think about HRL: a computational cost
is paid at every high-level decision point for
the high-level policy to deliberate and de-
cide on an option. This cost can come in
the form of a forward pass in a large neu-
ral network, chain-of-thought deliberation
in LLMs, or a planning budget using option
models. Once this cost is paid, the compu-
tational burden is reduced to the amount of
computation required for the option to pick
primitive actions.

The call-and-return model proposes to spend computation as a binary choice: either the
model deliberates over options or executes them. However, one could allocate computation
according to a different distribution by allowing various degrees of deliberation to happen
across timesteps. We illustrate this through Figure 16. Some states could require extensive
deliberation, for example, in the form of long chains of thought during the reasoning process.
Some other states could require shorter deliberations to decide on the correct action. The
line of work on the generalized policy iteration and the generalized policy evaluation (Barreto
et al., 2017, 2019b, 2020) is a concrete example of how one might redistribute computation
across all timesteps. In this work, additional computation is spent at every timestep to
select an action that is at least as good as the actions that would be chosen by any of the
individual option policies in isolation.10

7.2 Learning High-level Policies

The agent’s high-level policy, µ(o|s), is responsible for selecting an option. We present
different approaches to learning this quantity by separating methods into three categories:
model-free approaches, model-based approaches, and approaches that rely on in-context
learning using LLMs.

10. Combining options at execution time is also explored by looking at their value functions (Todorov, 2009a;
Hunt et al., 2018; Haarnoja et al., 2018).

66

Discovering Temporal Structure: An Overview of Hierarchical RL

7.2.1 Model-free approaches

Usual model-free RL methods (like Q-learning) can, with slight modifications, be used to
learn a policy that selects options µ(o|s). These modifications simply involve discounting
rewards obtained during option execution appropriately and using the state at the end of
option exection as the next environment state, i.e., the experience tuple used to update the
agent is (st, ot,

∑τ
k=0 γ

krt+k, st+τ), where τ is the duration of execution of option ot (Bradtke
and Duff, 1994). This approach, while simple, treats option execution as a black-box. When
the chosen option is Markov, meaning that its duration τ can be written purely as a function
of state (and not time), then intra-option learning can be used for improved sample-efficiency.
As long as states observed during option execution are inside the option’s initiation set, then
the corresponding transitions can be used to update µ(o|s) (Sutton et al., 1998). Specifically,
an SMDP transition (st, ot,

∑τ
k=0 γ

krt+k, st+τ) can be decomposed into up to τ transitions of
the kind (si, ot,

∑τ
k=0 γ

kri+k, si+τ) for all i such that si ∈ Io. Bacon (2018) later generalize
these insights to policy gradient methods by proposing the option gradient theorem.

Bandits that maximize learning progress. A popular model-free approach is to treat
the high-level policy as a contextual bandit (which can be thought of as an MDP with γ = 0).
The reward function for the bandit is designed to carefully trade off various objectives. For
example, when the extrinsic reward is dense and informative, the bandit simply chooses the
option expected to maximize the reward (Schaul et al., 2019). When the reward function is
sparse or deceptive, then a measure of learning progress (LP) is often added to the extrinsic
reward; the idea is that the agent should pick options that (in addition to greedily maximizing
reward) would also improve its knowledge of the environment and its own competence in
the environment (Colas et al., 2022). Although measuring LP itself is intractable, proxies
are used in practice. Competence progress (Oudeyer and Kaplan, 2007; Stout and Barto,
2010) prioritizes skills whose capabilities change the most with time—these skills represent
subgoals of intermediate difficulty (Florensa et al., 2018). Count-based bonuses prioritize
options that lead to high novelty (Bagaria and Schaul, 2023; Badia et al., 2020b,a), and
density-based approaches (Pong et al., 2020) attempt to maintain a high entropy distribution
for option selection from different states (Pitis et al., 2020).

7.2.2 Model-based approaches

Typically, in model-based RL, the agent first learns transition and reward models of the
world, and then uses those models to look ahead in the future, before finally making a
decision at the current timestep. When the agent learns single-timestep models of the
world, it must roll out these models over a long horizon. This is problematic because
model-prediction errors compound over time (Talvitie, 2017; Janner et al., 2019) and small
errors in model prediction can lead to massive errors in value approximation (Kearns and
Singh, 2002). Options allow the agent to learn temporally extended models of the world,
which afford longer-horizon planning.

Learning option models. The agent’s stream of interaction data can be used to learn
option models in two ways: (a) on-policy: where the agent updates the models for an
option after it is executed (Sutton et al., 1999b), or (b) off-policy: where the agent uses
intra-option learning (Sutton et al., 1998) to simultaneously learn about many options from

67

the data collected at every timestep. Some methods learn the option model in the agent’s
observation space, while others operate in an abstract state space. Models trained in the
raw observation space must contend with the challenges of high-dimensional inputs and
outputs (Nair and Finn, 2020). When state abstraction is learned alongside options, the
agent must also manage drift, where option models must rapidly adapt to changes in the
evolving abstract state representation.

Abstract planning. Options enable procedural abstraction, but the agent still has to plan
in its original observation space, which is challenging when that observation space is high-
dimensional. More effective planning can be achieved by combining options with a suitable
state abstraction. This combination of state and action abstraction can result in abstract
decision processes that are simpler to plan in, but this often comes at a cost—the coarser
the abstraction, the greater the potential for suboptimality of the resulting plans, mirroring
the trade-offs discussed in the context of options in Section 2.2. We now briefly discuss some
approaches that combine options with state abstraction for model-based planning.

• Expectation models. There are at least three choices for representing an option models:
(a) distribution model: predict the distribution over possible next states, (b) sample
model: generate a sample from the next state (and reward) distribution, and use
sample-based planning techniques such as Monte-Carlo Tree Search (Coulom, 2006),
and (c) expectation model, where the agent predicts the expected next state and
reward. When the value function is linear in the agent’s state representation, then
expectation models are sufficient for planning (Wan et al., 2019). Due to its simplicity,
expectation models can be learned efficiently by solving a system of linear equations
(Sutton et al., 2023), making it an attractive choice for HRL agents that simultaneously
learn state representations that evolve over time. There have also been proposals of
using temporal abstractions as a mechanism for focusing on local, subgoal-conditioned
models that are possibly easier to learn than a complete model of the environment (Lo
et al., 2024).

• Skills to symbols (Konidaris et al., 2018). When options have the property that their
policy drives all state variables to a small range of values, then the abstract state
representation needed for planning is that of a graph. Nodes of this graph correspond
to abstract states and edges correspond to options; an edge exists between two nodes
when one option terminates in a state from which another option has a high probability
of being successful in its own subtask. The discovery of options with this property
of sequential composability was discussed in Section 4.3. The Deep Skill Graphs
algorithm (Bagaria et al., 2021b, 2025b) simultaneously learns options and such a
graph representation for planning in continuous environments. However, skills cannot
always control all state variables—they often set some state variables, while leaving
others unchanged. When options have this property, then the representation needed
for planning is that of a type of factored MDP (Boutilier et al., 2000), which can be
succinctly described using Planning Domain Definition Language (PDDL) (McDermott
et al., 1998). The advantage of generating a PDDL description of the problem is
that it can then be efficiently solved by off-the-shelf classical planners, even when the
planning problem is long-horizon and combinatorial in the number of state variables.

68

Discovering Temporal Structure: An Overview of Hierarchical RL

The algorithms of Konidaris et al. (2018) provide a way to learn such abstract state
representations, enabling an agent to compute the probability with which a given plan
will be successful. Recently, Rodriguez-Sanchez and Konidaris (2024) proposed a way
to learn continuous state representations that lead to provably bounded value loss (Li
et al., 2006; Abel et al., 2016, 2020)—meaning that when the agent plans solely with its
learned abstract state representations, it foregoes no more than a bounded amount of
reward compared to an agent that plans in the MDP’s native state-space. An additional
challenge when learning option compatible state abstractions for planning is that of
transfer—learned representations should be resusable in future tasks encountered
by the agent. To learn transferrable representations, James et al. (2019) leverage a
simple insight: when the same agent is used to solve a family of related problems,
then state representations that are expressed from the point-of-view of the agent are
more amenable to transfer than state representations that uniquely describe each
individual task (Konidaris and Barto, 2007). For example, a home robot that solves
many tasks in many homes, does so with the same set of sensors and actuators; so
representations expressed from the perspective of that robot are reusable across many
different contexts. By applying this insight to learned symbolic representations, James
et al. (2019) reduce the number of samples required to solve each additional task in a
given sequence of tasks.

In summary, the combination of options with appropriate state abstractions offers a power-
ful framework for efficient model-based planning in complex environments. These approaches
address fundamental challenges in reinforcement learning by enabling longer planning hori-
zons, reducing the dimensionality of the planning space, and mitigating error propagation in
learned models (Bagaria et al., 2025b). The trade-off between abstraction granularity and
solution optimality remains a central consideration, with different methods offering various
compromises between planning efficiency and performance guarantees. As hierarchical
reinforcement learning continues to evolve, integrating these state and action abstraction
techniques with advances in representation learning and approximate planning promises to
further enhance the scalability and applicability of RL to increasingly complex real-world
problems. Future research directions include developing more robust methods for discovering
suitable abstractions automatically, improving the theoretical understanding of abstraction
hierarchies, and bridging the gap between symbolic planning and continuous control.

7.2.3 Large Language Models

If options are represented using LLMs, in-context learning can be used to learn the high-level
policy, µ(o|s). This can be done by having the LLM output Python code that implements
skill-selection logic (Wang et al., 2024c; Klissarov et al., 2024), or to output formal plans
described using PDDL (Silver et al., 2024). Such policies can then be updated by providing
execution traces as context to the LLMs and asking for code refinements. It is also possible to
directly deploy the LLM in the environment to select skills at every high-level decision point
(Ahn et al., 2022). Since such approaches do not require gradient updates, they potentially
offer faster adaptation. However, the nature of in-context is currently not well understood,
for example, in terms of generalization and robustness, and is an active area of research.

69

8. Challenges of Discovery

Arguably, one of the biggest challenges in discovering temporal abstractions comes from the
fact that there is a lack of agreed-upon objective that would yield meaningful options
across a variety of domains. This can be observed by the wide diversity of methods presented
in Section 4, 5, and 6. Additionally, the complexity overhead that HRL sometimes
introduces can make it less appealing from a practical perspective. The time invested by a
practitioner in setting up an HRL algorithm is valuable. If this time investment does not
lead to significantly improved performance on a particular task, or is not generally applicable
across tasks, the practitioner will likely choose a simpler approach.

The two aforementioned points indicate that there is a lot of potential for research in
HRL in order to find reliable and general solutions as well as understanding where to
apply them (see Section 10). In what follows, we highlight prominent technical challenges
that arise when attempting to discover temporal abstractions.

8.1 Non-stationarity

One of the main difficulties in learning a hierarchy of behaviours stems from its modular
nature. A hierarchical agent has to learn, potentially simultaneously, about the option
policies, option reward functions, termination functions, initiation functions, and high-level
policy. As each of these modules is being learned, it creates non-stationary targets for the
other modules.

A straightforward approach to deal with this non-stationarity is by learning the different
components separately. For instance, this can be done by leveraging offline datasets (methods
in Section 5) to first learn a set of option rewards or a set of option policies, before fixing
them. These components can then be provided to a high-level policy that will learn to
achieve a certain task. Similarly, we can leverage the LLM’s prior knowledge to define,
beforehand, option reward functions or to directly model the option policies (methods in
Section 6). These would create stationary targets for the remainder of the components.
LLMs can also be used to model the high-level policy itself, either by directly querying them
or by leveraging their coding abilities to define the skill execution logic. The in-context
learning abilities of LLMs could further allow for fast, gradient-free adaptation with respect
to a changing option set.

When learning tabula rasa, the non-stationarity can be particularly challenging. It is
common for methods to first define an option learning phase, where the high-level policy
acts according to a more exploratory behaviour, for example by uniformly choosing over the
options (Machado et al., 2017; Eysenbach et al., 2019). Such a phase is meant to provide
experience in learning the option reward functions and option policies. Nachum et al. (2018)
emphasize the difficulty of non-stationarity in HRL when learning from past experiences
that are stored in a dataset, called an experience replay buffer (Lin, 1991). An option that
was previously sampled and stored within a replay buffer, together with the experience it
generated, would not produce the same data distribution if we were to sample it now. To
alleviate this, Nachum et al. (2018) relabel which option was used for a stored datapoint
with the option that is currently most likely to generate the actions seen in this datapoint.

Bagaria et al. (2023) illustrate how the non-stationary challenge affects the initiation set.
They argue that learning the initiation function using binary classification (or, equivalently,

70

Discovering Temporal Structure: An Overview of Hierarchical RL

Monte Carlo value estimation) is only a sound approach when the option policy is fixed. In
their approach, the initiation function captures the capability of the current option policy
to achieve its goal. As the option policy evolves, so must the initiation function. As a
consequence, when an option is unsuccessful from a state, its initiation probability at that
state goes down, and so does the probability that the option policy improves in and around
that state. While this is unproblematic when the option policy is fixed, it eventually leads to
overly conservative initiation functions: options tend to initiate in smaller and smaller parts
of the state-space during the agent’s lifetime. To address these issues, they incorporate tools
from off-policy evaluation and use exploration bonuses to increase the initiation probability
of states from which policy improvement is most likely.

8.2 Learning About Multiple Behaviours

One of the appeals of the HRL is that if an agent has access to a large collection of options,
it may efficiently achieve good performance on a variety of tasks by re-composing them.
However, such a large library of behaviours also comes at the cost of first learning the options
themselves, highlighting some of the fundamental trade-offs presented in Section 2.2.

To approach this problem, it is convenient to turn to off-policy algorithms (Precup
et al., 2000). Such algorithms allow for learning from data that was not generated by the
current policy. Klissarov and Precup (2021) propose update rules to improve all options
simultaneously by relying on a decomposition of the state-option distribution, introducing
a minimal amount of off-policy corrections, and remaining compatible with any policy
optimization algorithm. Their method can also be seen as an all-options policy optimization,
similar to all-action updates in RL (Sutton et al., 2001). Daniel et al. (2016) instead
leverage the perspective in which options are seen as latent variables. The authors adopt an
expectation-maximization approach, which assumes a linear structure of the option policies.
Smith et al. (2018) alleviate this assumption and derive a policy gradient objective that
improves the data efficiency and interpretability of the learned options. A conceptually
related work is proposed by Wulfmeier et al. (2020), which leverages dynamic programming
to infer option and action probabilities in hindsight.

We have previously introduced the methods of hindsight relabeling (Andrychowicz et al.,
2017) as part of the skill discovery methods. We can reframe their approach through this
question: if you have a multitude of options, or even a continuous spectrum, which other
option should you update for a given trajectory? The authors answer this question by
relabeling the trajectory stored in the replay buffer with the final state that was reached. This
essentially leverages off-policy as the experience generated by one policy is used to update
another policy. The importance of learning off-policy through re-labeling is emphasized by
Nachum et al. (2018), which shows significantly faster learning, and by Levy et al. (2019),
which extends the ideas of re-labeling experience through hindsight goal transitions.

Is it possible to sample-efficiently learn about multiple options from a single stream of
experience? Barreto et al. (2020) propose the Generalized Policy Improvement update rules
to answer this question. The authors extend the concept of improvement from a single policy
to multiple policies simultaneously. Specifically, their theorem states that, for a given set of

71

policies, π1, π2, ..., πn, and their associated approximate Q values, Qπ1 , Qπ2 , ..., Qπn ,

π(s) ∈ argmax
a

max
i
Qπi(s, a), (100)

then Qπ(s, a) ≥ maxiQ
πi(s, a). This update rule is used by Barreto et al. (2019a) to

efficiently learn how to execute a combination of options. Thakoor et al. (2022) further
generalize the results beyond Markov policies, in particular, to options whose execution
duration follows a geometric distribution. The idea of learning efficiently about multiple
policies is closely related to concepts such as the successor representations (Dayan, 1993) and
successor features (Barreto et al., 2017), as well as other decompositions of the transition
function (Touati et al., 2023).

8.3 Combining Rewards

When learning option policies through their option reward functions, we are faced with
another important question: how should we balance between the option reward and the
environmental reward? Dayan and Hinton (1993) argue that the option policies should be
agnostic to the environmental reward and learned only through the intrinsic one, leading
to specialised options. Vezhnevets et al. (2017) take a softer approach and provide both
rewards, possibly as the environmental reward contains rich information in the environments
that were considered. In other cases, there is no intrinsic reward at all (Bacon et al., 2017).
Sutton et al. (2023) investigate these questions from the perspective of planning and learning
with options that either respect or do not respect the environmental reward. The authors
show that reward-respecting options (that is, options that take the environment reward
into consideration) are much more effective when used for planning. Zahavy et al. (2022)
propose a point of view of constrained optimization to balance these objectives and leverage
Lagrange multipliers in practice. A thorough examination concerning the trade-offs of how
hierarchical agents combine environmental reward and intrinsic reward is yet to be made.

9. Related Fields

We now discuss the fields related to HRL, covering different types of abstractions, continual
RL, programmatic RL, and cooperative multi-agent RL.

9.1 State and Action Abstractions in Reinforcement Learning

Scaling RL for real-world applications faces challenges in handling high-dimensional or noisy
observations and large action spaces. Accordingly, the RL community has long explored
abstraction, which in computer science practice suppresses irrelevant low-level details so
that reasoning can proceed at a higher conceptual level (Colburn and Shute, 2007), as a
means to mitigate the curse of dimensionality and improve sample efficiency (Konidaris,
2019; Ho et al., 2019; Abel, 2022). Abstraction can be accomplished either through explicit
aggregation of states and actions (Li et al., 2006), or by using neural networks as a mapping
from the raw state or action space to an abstract space—a process often referred to as
representation learning (Abel, 2022). Various forms of abstraction have been proposed in
the RL literature, each targeting distinct equivalence relations to capture different aspects
of the learning problem.

72

Discovering Temporal Structure: An Overview of Hierarchical RL

State abstraction offers a principled approach to scaling RL to control tasks involving
high-dimensional observations, such as images, which often contain substantial task-irrelevant
details. Li et al. (2006) survey a spectrum of state-abstraction schemes, each defined by its
own equivalence criterion. For example, some merge states that yield identical immediate
reward and transition dynamics under every action, while others require the same optimal
action-value functions. In contrast, bisimulation metrics (Ferns et al., 2004, 2011; Castro,
2020; Zhang et al., 2021a; Luo et al., 2025) dispense with such rigid equivalence by quantifying
how much two states differ in their reward distributions and transition kernels, which enables
grouping those whose combined divergence falls below a chosen threshold. To make state
abstraction more deep-learning-friendly, recent approaches introduce differentiable objectives,
specifically reward prediction and self-prediction losses defined with respect to a learned
representation, to train compact, informative embeddings (Gelada et al., 2019; Ni et al., 2024).

Another line of work focuses on state-action abstraction, notably MDP homomorphism,
which maps state–action pairs to abstract equivalents while preserving transition and
reward structure (Ravindran, 2004; Ravindran and Barto, 2001, 2004; Narayanamurthy
and Ravindran, 2008; Rezaei-Shoshtari et al., 2022). This aggregation of the state-action
space, termed model minimization, forms an abstract MDP capable of capturing symmetrical
aspects of the environment.11

As for action abstraction, it can be classified into two categories: per-timestep and
multiple-timestep. Per-timestep action abstraction is commonly applied to mitigate the
computational complexity associated with large action spaces, involving action elimination
(Even-Dar et al., 2006; Zahavy et al., 2018), action embedding or transformation (Van Hasselt
and Wiering, 2009; Dulac-Arnold et al., 2015; Jiang et al., 2023), and affordances (Abel et al.,
2014; Fulda et al., 2017; Khetarpal et al., 2020a), which reduces the effective action space to
only those that satisfy a given intent or task-relevant criterion under the current state. Per-
timestep action abstraction can also be extended to policy abstraction (Barreto et al., 2019a;
Zhang et al., 2023), which provides a framework for generalizing and compressing policy
behaviours by mapping detailed decision-making strategies into a succinct abstract space.
Multiple-timestep action abstraction, often referred to as temporal abstraction, is a fundamen-
tal aspect of HRL. It can be either closed-loop as described in the option framework (Sutton
et al., 1999b), or open-loop as a compression of an action sequence (Pertsch et al., 2021).

These abstraction types naturally interface with HRL, which provides a framework
for integrating them effectively. In addition to temporal abstraction, HRL facilitates the
integration of various types of state and action abstractions. In classical HRL, two common
forms of state abstraction are employed: first, state abstraction within the high-level
controller, enabling learning or planning in a more tractable space. Feudal RL (Dayan and
Hinton, 1993), as a prominent example, employs information hiding to abstract low-level
details from the state observed by the manager. Second, state abstraction within the low-
level controller, which abstracts states irrelevant to a particular option. State abstractions
within MAXQ (Dietterich et al., 1998) and option models are natural examples, as options
can be defined exclusively for states where the option is applicable. Classical HRL also
incorporates per-timestep action abstractions. In the option framework (Sutton et al.,

11. Symmetrical aspects denote invariances under transformations of states and actions that leave both the
transition dynamics and reward function unchanged.

73

1999b), the initiation set serves as a high-level per-timestep action abstraction, indicating
the affordance of a specific option in different states.

Several HRL methods leverage state and action abstractions in addition to temporal
abstraction. Relativized options (Ravindran and Barto, 2002; Ravindran, 2003; Ravindran
and Barto, 2003) integrate state-action abstraction (MDP homomorphism) techniques within
an HRL framework to generate concise representations of a related task family. These options
are defined without an absolute frame of reference, and their policies adapt according to the
circumstances of their invocation, enabling effective multi-task knowledge transfer. Portable
options (Konidaris and Barto, 2007) extend this concept, ensuring that the option depends
solely on abstract states characterized by task-invariant descriptors. Castro and Precup
(2010) apply a bisimulation metric for two different MDPs to facilitate knowledge transfer and
propose an option-bisimulation metric to quantify the behavioural discrepancy between states
under an option. Abel et al. (2020) propose a value-preserving abstraction, combining state
abstractions and options to ensure the representation of near-optimal policies is maintained.
In their approach, the state abstraction ϕ, which maps the state to an abstract state,
defines the initiation and termination functions for a set of ϕ-relative options. Khetarpal
et al. (2021) extend their definition of affordances (Khetarpal et al., 2020a), introducing
temporally extended intents and option affordances that benefit planning in temporally
abstract partial models. Hansen-Estruch et al. (2022) connect GCRL and bisimulation
metrics. The authors propose a state-goal bisimulation metric to learn a shared state-goal
representation, improving representation learning across tasks defined by different goals.

9.2 Continual Reinforcement Learning

Continual RL defines the problem setting in which any component of the environment, such as
the transition function, the reward function, the state space, or the action space, may change
over time (Khetarpal et al., 2020c). Continual RL emphasizes the stability-plasticity dilemma
(Carpenter and Grossberg, 1988) which arises when training neural networks under non-
stationarity: should we prioritize recent experiences or remember previous experiences? A
common example is when an agent is faced with a series of tasks within a complex environment,
without being told when tasks are changing. Such an example illustrates the importance
of fast adaptation as a desirable quality in a continually learning agent. A related and
well-known difficulty is in avoiding catastrophic forgetting, where an agent adapts adequately
to the latest experiences, but completely forgets what it learned in past experiences.

To face the challenges posed by the continual RL problem setting, there exists a variety of
methods, such as explicit knowledge retention mechanisms or leveraging the structure shared
across tasks. Agents empowered by a set of reusable skills are a part of the latter category:
they have the potential to efficiently adapt to new tasks by recombining or fine-tuning their
library of skills, minimizing the need to relearn from scratch (e.g., Klissarov and Machado,
2023). Additionally, HRL agents could mitigate catastrophic forgetting by expanding and
filtering their set of skills over time. One of the fundamental reasons for the synergy between
HRL and continual RL is that both fields rarely focus on optimally solving any of the tasks
that are being given. Instead, they are concerned about fast adaptation and transferability.

While promising, integrating HRL and continual RL presents open research challenges.
As mentioned in Section 8, it is necessary to develop scalable skill discovery methods that

74

Discovering Temporal Structure: An Overview of Hierarchical RL

can function in non-stationary settings, devise frameworks that jointly optimize for continual
learning and HRL objectives, and design benchmarks and metrics for evaluating agents.

9.3 Programmatic Reinforcement Learning

As stated in Section 2, HRL conceptually makes an analogy to programming languages and
formal systems. An example of this connection is Hoare Logic (Hoare, 1969), a formal system
for assessing the correctness of imperative programs, which shares a similar structure with
the option framework (see Section 3.2) including initiation sets (pre-conditions), policies
(commands), and termination conditions (post-conditions). Both frameworks facilitate
reasoning about action sequences, thereby enhancing the structuring of complex decision-
making processes. Research efforts have been undertaken to bridge the gap between HRL,
programming languages, logic, and formal methods.

Programs as high-level policy. Early approaches, HAM (Parr and Russell, 1997) and
PHAM (Andre and Russell, 2000) utilized hierarchies of partially specified finite-state
machines (FSM) to structure policies. There are four types of states in HAMs: Action states
execute actions, Call states execute subroutines, Choice states select subsequent states
non-deterministically, and Stop states halt execution and return control to prior call states.
This provides a prototype for early HRL methods, allowing for better compositionality,
transferability (Andre and Russell, 2000), and state abstraction (Andre and Russell, 2002).
More recent approaches utilize programs, specifically in domain-specific languages (DSLs),
as high-level policies to guide lower-level RL agents. These are often called programmatic
policies. Such an approach allows the system designer to inject biases that could, for example,
improve sample efficiency over neural representations (Moraes et al., 2025).

Programs convey structured, interpretable, and unambiguous information, and their
incorporation into the policy space can reduce the search space for the overall solution
and offer a natural method for integrating prior knowledge symbolically. The structured
representation of these programs allows one to decompose policies into options that can also
be used to induce spaces that are more conducive to search (Moraes and Lelis, 2024; Moraes
et al., 2025). In general, the programs can be either hand-crafted (Andreas et al., 2017; Sun
et al., 2020), synthesized automatically by construction or synthesis on a predetermined
syntax (Carvalho et al., 2024) or semantic (latent) space (Yang et al., 2021b; Hasanbeig
et al., 2021; Moraes et al., 2023; Moraes and Lelis, 2024), by parameterizing the program
space, also known as neuro-symbolic (Sheth and Roy, 2023) approaches (Denil et al., 2017;
Sohn et al., 2018; Trivedi et al., 2021; Zhao et al., 2021; Qiu and Zhu, 2022; Liu et al.,
2023a; Lin et al., 2024) or by leveraging foundation models (Wang et al., 2023a; Klissarov
et al., 2025a; Moraes et al., 2025). Learning search guidance for these spaces is an active
area of research (Medeiros et al., 2022; Aleixo and Lelis, 2023). The idea of decomposing
policies into subprograms has also been explored even when the underlying policy is a neural
network (Alikhasi and Lelis, 2024).

Programs to intrinsic rewards. Akin to the intrinsic reward described in Section 4,
recent studies (Jothimurugan et al., 2019; Icarte et al., 2022; Furelos-Blanco et al., 2023;
Venuto et al., 2024) demonstrate the feasibility of “translating” the formal languages (e.g.,
programs or FSMs) into the reward signal to enhance the RL agent.

75

Distilling the neural policies to interpretable programs. A series of studies focuses
on condensing an agent’s policy into more hierarchical, interpretable, and verifiable formats
such as programs (Verma et al., 2018, 2019) or Decision Trees (Bastani et al., 2018), enhancing
both lightness and clarity.

9.4 Cooperative Multi-Agent Reinforcement Learning

Cooperative multi-agent RL (Cooperative MARL) and HRL can be seen as conceptually
connected: managing problem complexity using the structure of the problem. By breaking
down large-scale problems into more manageable sub-problems, both approaches improve
tractability and facilitate learning. In cooperative MARL, decomposition is achieved by
distributing the decision-making process among multiple agents, whereas in HRL, it is
accomplished through temporal abstraction. As an example, Feudal RL (Dayan and Hinton,
1993) can be viewed as a multi-agent system comprising managers and workers. This
framework naturally extends to cooperative MARL settings (Ahilan and Dayan, 2019).
Extensive research has explored the integration of HRL with cooperative MARL; interested
readers are referred to Section 3.5 of the work by Pateria et al. (2021) for further details.

10. Promising Domains for Hierarchical Reinforcement Learning

In this work, we have examined a wide diversity of HRL approaches, each time highlighting
the important ways in which they help decision-making through the benefits we laid out in
Section 2.1. The vast body of research in HRL encompasses a wide spectrum of methods
spanning multiple environments and domains. Under this diversity of approaches, a key
question emerges: in what domains should we expect HRL to be most effective?
One obvious criterion is for the domain to contain tasks that are temporally extended tasks,
as short-horizon tasks offer limited opportunities for leveraging temporal abstractions. For
example, decomposing short-horizon tasks into subtasks is likely to be less fruitful than
long-horizon ones. However, can we go beyond this simple criterion to predict the suitability
of HRL methods?

As illustrated in Section 2.2, one of the motivations for the HRL formalism is that it is
a way to efficiently obtain good solutions within a certain sample and computation budget.
This is particularly relevant in complex environments, where optimality is impractical. Should
HRL then be considered as a fallback option when non-hierarchical RL fails in complex
environments? This perspective positions HRL as a last resort when the task is too hard,
but importantly, does not rely on any concrete intuition as to why HRL should even work
in such situations. To provide a more informative answer, we go back to the fundamental
idea that was used to introduce the methods in this work. This idea is that HRL methods
exploit structure. A complex environment lacking exploitable structure might not benefit
from HRL. Similarly, a complex environment where we only care about a single task might
limit HRL’s advantages, given the inherent overhead of learning a hierarchy. Therefore, task
complexity alone is not a sufficient condition for the effectiveness of HRL methods.

HRL appears best suited for long-horizon environments that allow for a diversity of goals
that share a structural overlap (whether these goals are defined by the environment or the
agent itself). From this perspective, open-ended systems are particularly promising
domains for HRL methods. Hughes et al. (2024) define an open-ended system as

76

Discovering Temporal Structure: An Overview of Hierarchical RL

one that presents a constant flow of novel and possibly learnable goals. It is common in
such systems that these goals share, to a degree, a common underlying structure, which
makes HRL particularly appealing. Below, we showcase specific domains exemplifying these
characteristics. Importantly, this list is not exhaustive but rather serves to illustrate settings
where HRL might excel.

10.1 Example Environments and Applications

Web Agents. The World Wide Web, a dynamic and ever-changing environment, presents
a unique challenge for AI agents. The recent surge in interest has led to a variety of
implementations of challenging domains, such as Android-in-the-Wild (Rawles et al., 2023)
or WebArena (Zhou et al., 2024). Its near-infinite tasks and constantly evolving goals
demand adaptability and the ability to decompose complex objectives into manageable
subgoals. As mentioned Section 3, even if the resulting agent is not hierarchical (i.e., does
not explicitly carry a set of skills), learning to navigate the web through HRL methods,
such as curriculum-based ones, is particularly important to address the sheer complexity
of the web. Indeed, Web Agents must learn to navigate a constantly shifting landscape of
information and services, adapting to new data, evolving user preferences, and the emergence
of novel websites and services. Another important characteristic is that many tasks of
interest share a lot of underlying structure, a key point of HRL. Overall, this complex and
open-ended domain requires agents capable of learning, adapting, and generalizing across
multiple timescales, ultimately revolutionizing how we interact with the online world.

Robotics. Robotics, with its emphasis on embodied intelligence and real-world interaction,
presents a compelling domain for exploring the potential of HRL methods. The tasks robots
face, from navigating complex environments to manipulating objects with dexterity, involve
long horizons where, at each step, a low-level action is sampled from a continuous action
space. HRL offers a natural framework for decomposing these complex tasks into manageable
sub-policies, allowing robots to learn and refine abstract skills while also developing higher-
level strategies for sequencing and coordinating them. Practical implementations of interest
include AI2-THOR (Kolve et al., 2017), Habitat (Szot et al., 2021; Puig et al., 2024),
CALVIN (Mees et al., 2022) and OGBench (Park et al., 2025a).

The ability to recompose learned skills into novel combinations is crucial for robots
operating in unstructured and dynamic environments, where adaptability and generalization
are key. For instance, a robot learning to grasp objects might develop sub-policies for
reaching, orienting its gripper, and applying the appropriate force. Ideally, these individual
skills could then be recombined and adapted to grasp a wide variety of objects in different
contexts, without requiring retraining from scratch. The long horizons inherent in many
robotic tasks, coupled with the need for flexible and adaptable skill acquisition, make HRL
a promising approach for developing robots capable of performing complex, real-world tasks
with increasing autonomy and efficiency.

Open-ended games. Training AI agents on games has a long history of striking successes
in domains like Go (Silver et al., 2017) or Atari 2600 games (Mnih et al., 2015).12 However,

12. Note that this applies less to the case of hard exploration games such Montezuma’s Revenge, Private Eye,
or Pitfall!, amongst others.

77

for HRL to be particularly effective, the domain should be complex, long-horizon, and
open-ended. We have seen in Section 4.8 such an example, where a goal-conditioned policy
trained on a large diversity of tasks led to human-timescale adaptation. Key to this success
was the fact that data was readily available through fast simulation, allowing for quicker
research iteration. This makes it particularly interesting to study open-ended games in order
to better understand HRL methods. We now provide two such examples. NetHack is a
complex roguelike game, and it is an ideal environment for exploring the benefits of HRL. It
has been brought to the RL community through the NetHack Learning Environment (Küttler
et al., 2020). Its open-ended nature, procedurally generated dungeons, and long-horizon
gameplay require exploration, planning, and adaptation across multiple timescales. Success
requires not just immediate tactical decisions, but also strategizing towards long-term goals,
demanding credit assignment across extended temporal spans. The vast diversity of situations
encountered also requires generalization, making HRL’s ability to learn reusable sub-policies
and higher-level strategies particularly valuable. Minecraft. Minecraft (Johnson et al.,
2016; Kanervisto et al., 2021), with its expansive, procedurally generated world and open-
ended gameplay, presents a compelling testbed for HRL algorithms. The game requires
navigating across diverse biomes, gathering resources, crafting tools, and structures, and
ultimately, surviving and thriving. This requires planning and execution across multiple
timescales. For instance, while the immediate goal might be chopping down a tree for
wood, this action serves the higher-level objective of building a shelter for protection against
nocturnal mobs. Furthermore, Minecraft’s crafting system inherently embodies a hierarchical
structure. Creating complex items like diamond tools requires a chain of prerequisite crafting
steps, each with its own subgoals and resource requirements. HRL agents could learn to
decompose these complex tasks into manageable sub-policies, mirroring the hierarchical
nature of crafting itself.

11. Conclusion

In this paper, we have attempted to cover the rich, complex, and ever-expanding field of
hierarchical reinforcement learning. We have started by highlighting the importance of
modularity and compositionality as environment characteristics for hierarchical reinforcement
learning to discover useful structure. We have then defined how hierarchical reinforcement
learning can benefit an agent by looking through the lens of the fundamental problems in
decision-making.

It is through these benefits, namely exploration, credit assignment, transferability, and
interpretability, that we subsequently presented all the methods covered in this work. These
benefits also more clearly characterize what hierarchical reinforcement learning is: it is
not about an agent architecture, but rather about discovering structure and using it to
achieve these fundamental benefits. When presenting the existing techniques, we have
grouped them into three categories: (1) discovery from online experience, (2) discovery
through offline datasets, and (3) discovery with foundational models. Within each of these
categories, we have further decomposed the large corpus of methods into families that
share fundamental insights about the kind of structure an agent should attempt to discover.
We have also discussed how one might leverage temporally abstract behaviour from an
agent’s perspective. Finally, we have emphasized the important challenges that exist when

78

Discovering Temporal Structure: An Overview of Hierarchical RL

discovering structure through hierarchical reinforcement learning and the environments in
which it is most promising to do so.

Throughout this work, we have constantly strived to connect technical knowledge of the
methods to fundamental principles, for instance by explicitly referring to the benefits of
hierarchical reinforcement learning. We have also made connections to highly relevant related
fields, for example, programmatic RL or other types of abstractions in RL (see Section 9).
There exist many other research areas that would be particularly interesting to understand
for hierarchical reinforcement learning research. One such field is that of search algorithms
(Telikani et al., 2021) such as quality diversity algorithms (Lehman and Stanley, 2011; Cully
et al., 2015; Ding et al., 2024). The potential for hierarchical reinforcement learning research
is continually expanding as we enter an age where AI models are required to be generalists.
In fact, as we tackle tasks with increasingly long horizons, finding decompositions that
afford learnability may simply be unavoidable in reinforcement learning (Park et al., 2025b).
Consequently, simple and scalable methods for discovering and leveraging structure are
more pressing than ever. We hope this work provides a useful foundation for realizing this
potential and inspires future innovation.

79

Notation

Table 2: Glossary of notations used in RL and HRL (see Section 3).

Reinforcement Learning (RL)

St ∈ S State at time step t

At ∈ A Action at time step t

Rt+1 ∈ R Reward at time step t+ 1

p(s′ | s, a) Transition probability

γ ∈ [0, 1) Discount factor

π(a | s) Policy over actions

dγπ(s) Discounted state occupancy under π

qπ(s, a) Action-value function under policy π

vπ(s) State-value function under policy π

Q(s, a) Estimated Q-function

Hierarchical Reinforcement Learning (HRL)

o ∈ O Option (temporally extended action)

z ∈ Z Skill (alternative term for option)

g ∈ G Goal

µ(o | s) High-level policy

π(a | s, o) Option policy

β(s, o) Option termination function

I(s, o) Option initiation function

PO(s, o, s′) Option transition model

qπ(s, o) Option-value function

qu(s, o, a) Action-value within option context

uβ(o, s′) Option value upon arrival

vµ(s) Value function under high-level policy µ

ro(s, a, s′) Intra-option reward function for option o

80

Discovering Temporal Structure: An Overview of Hierarchical RL

Acknowledgements

We would like to thank Xujie Si, Khimya Khetarpal, Seohong Park, Bart lomiej Cupia l,
Isabeau Prémont-Schwarz, Levi Lelis, Andrew Levy, Alex Ivanov, Nishanth Anand, and
Jonathan Colaço Carr for their valuable feedback. This research is supported in part by
NSF 1955361 and NSF CAREER 1844960. The research is supported in part by the Natural
Sciences and Engineering Research Council of Canada (NSERC), and the Canada CIFAR
AI Chair Program.

References

Abel, D. (2022). A Theory of Abstraction in Reinforcement Learning. PhD thesis, University
of Texas.

Abel, D., Barth-Maron, G., MacGlashan, J., and Tellex, S. (2014). Toward affordance-aware
planning. In First Workshop on Affordances: Affordances in Vision for Cognitive Robotics.

Abel, D., Hershkowitz, D. E., and Littman, M. L. (2016). Near Optimal Behavior via
Approximate State Abstraction. In International Conference on Machine Learning.

Abel, D., Umbanhowar, N., Khetarpal, K., Arumugam, D., Precup, D., and Littman, M. L.
(2020). Value Preserving State-Action Abstractions. In International Conference on
Artificial Intelligence and Statistics.

Abramson, D. I. A. T. J., Ahuja, A., Brussee, A., Carnevale, F., Cassin, M., Fischer, F.,
Georgiev, P., Goldin, A., Harley, T., Hill, F., Humphreys, P. C., Hung, A., Landon, J.,
Lillicrap, T. P., Merzic, H., Muldal, A., Santoro, A., Scully, G., von Glehn, T., Wayne, G.,
Wong, N., Yan, C., and Zhu, R. (2021). Creating Multimodal Interactive Agents with
Imitation and Self-Supervised Learning. arXiv.

Achiam, J., Edwards, H., Amodei, D., and Abbeel, P. (2018). Variational Option Discovery
Algorithms. arXiv.

Adeniji, A., Xie, A., Sferrazza, C., Seo, Y., James, S., and Abbeel, P. (2023). Language
Reward Modulation for Pretraining Reinforcement Learning. arXiv.

Ahilan, S. and Dayan, P. (2019). Feudal multi-agent hierarchies for cooperative reinforcement
learning. arXiv.

Ahn, M., Brohan, A., Brown, N., Chebotar, Y., Cortes, O., David, B., Finn, C., Fu, C.,
Gopalakrishnan, K., Hausman, K., Herzog, A., Ho, D., Hsu, J., Ibarz, J., Ichter, B., Irpan,
A., Jang, E., Ruano, R. J., Jeffrey, K., Jesmonth, S., Joshi, N., Julian, R., Kalashnikov,
D., Kuang, Y., Lee, K.-H., Levine, S., Lu, Y., Luu, L., Parada, C., Pastor, P., Quiambao,
J., Rao, K., Rettinghouse, J., Reyes, D., Sermanet, P., Sievers, N., Tan, C., Toshev, A.,
Vanhoucke, V., Xia, F., Xiao, T., Xu, P., Xu, S., Yan, M., and Zeng, A. (2022). Do As I
Can and Not As I Say: Grounding Language in Robotic Affordances. In Conference on
Robot Learning.

81

Ahuja, R. K., Magnanti, T. L., and Orlin, J. B. (1993). Network Flows - Theory, Algorithms
and Applications. Prentice Hall.

Ajay, A., Kumar, A., Agrawal, P., Levine, S., and Nachum, O. (2021). Opal: Offline primitive
discovery for accelerating offline reinforcement learning. International Conference on
Learning Representations.

Akakzia, A., Colas, C., Oudeyer, P.-Y., Chetouani, M., and Sigaud, O. (2021). Ground-
ing Language to Autonomously-Acquired Skills via Goal Generation. In International
Conference on Learning Representations.

Alayrac, J.-B., Donahue, J., Luc, P., Miech, A., Barr, I., Hasson, Y., Lenc, K., Mensch,
A., Millican, K., Reynolds, M., Ring, R., Rutherford, E., Cabi, S., Han, T., Gong, Z.,
Samangooei, S., Monteiro, M., Menick, J., Borgeaud, S., Brock, A., Nematzadeh, A.,
Sharifzadeh, S., Binkowski, M., Barreira, R., Vinyals, O., Zisserman, A., and Simonyan, K.
(2022). Flamingo: a Visual Language Model for Few-Shot Learning. Neural Information
Processing Systems.

Aleixo, D. S. and Lelis, L. H. S. (2023). Show Me the Way! Bilevel Search for Synthesizing
Programmatic Strategies. In The Association for the Advancement of Artificial Intelligence.

Alikhasi, M. and Lelis, L. H. S. (2024). Unveiling Options with Neural Network Decomposi-
tion. In International Conference on Learning Representations.

Ames, B. and Konidaris, G. D. (2019). Bounded-Error LQR-Trees. In International
Conference on Intelligent Robots and Systems.

Amin, S., Gomrokchi, M., Satija, H., van Hoof, H., and Precup, D. (2021). A Survey of
Exploration Methods in Reinforcement Learning. arXiv.

Amodei, D., Olah, C., Steinhardt, J., Christiano, P. F., Schulman, J., and Mané, D. (2016).
Concrete Problems in AI Safety. arXiv.

Andre, D. and Russell, S. (2000). Programmable reinforcement learning agents. Neural
Information Processing Systems.

Andre, D. and Russell, S. J. (2002). State abstraction for programmable reinforcement
learning agents. In The Association for the Advancement of Artificial Intelligence.

Andreas, J., Klein, D., and Levine, S. (2017). Modular multitask reinforcement learning
with policy sketches. In International conference on machine learning, pages 166–175.
PMLR.

Andrychowicz, M., Crow, D., Ray, A., Schneider, J., Fong, R., Welinder, P., McGrew, B.,
Tobin, J., Abbeel, P., and Zaremba, W. (2017). Hindsight Experience Replay. In Neural
Information Processing Systems.

Anthropic (2024). Developing a Computer Use Model.
https://www.anthropic.com/news/developing-computer-use.

82

Discovering Temporal Structure: An Overview of Hierarchical RL

Arjona-Medina, J. A., Gillhofer, M., Widrich, M., Unterthiner, T., and Hochreiter, S. (2018).
RUDDER: Return Decomposition for Delayed Rewards. In Neural Information Processing
Systems.

Auer, P., Jaksch, T., and Ortner, R. (2008). Near-optimal Regret Bounds for Reinforcement
Learning. In Neural Information Processing Systems.

Bacon, P. and Precup, D. (2016). A Matrix Splitting Perspective on Planning with Options.
arXiv.

Bacon, P.-L. (2013). On the Bottleneck Concept for Options Discovery: Theoretical
Underpinnings and Extension in Continuous State Spaces. Master’s thesis, McGill
University.

Bacon, P.-L. (2018). Temporal representation learning. PhD thesis, McGill University.

Bacon, P.-L., Harb, J., and Precup, D. (2017). The Option-Critic Architecture. The
Association for the Advancement of Artificial Intelligence.

Badia, A. P., Piot, B., Kapturowski, S., Sprechmann, P., Vitvitskyi, A., Guo, Z. D.,
and Blundell, C. (2020a). Agent57: Outperforming the Atari Human Benchmark. In
International Conference on Machine Learning.

Badia, A. P., Sprechmann, P., Vitvitskyi, A., Guo, Z. D., Piot, B., Kapturowski, S.,
Tieleman, O., Arjovsky, M., Pritzel, A., Bolt, A., and Blundell, C. (2020b). Never Give
Up: Learning Directed Exploration Strategies. In 8th International Conference on Learning
Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net.

Bagaria, A. (2025). Skill Discovery for Exploration and Planning. Doctor of philosophy,
Brown University.

Bagaria, A., Abbatematteo, B. M., Gottesman, O., Corsaro, M., Rammohan, S., and
Konidaris, G. (2023). Effectively Learning Initiation Sets in Hierarchical Reinforcement
Learning. In Neural Information Processing Systems.

Bagaria, A., Koch, A. D. M., and Konidaris, G. (2025a). Going Beyond State-Reaching:
Learning Abstractions for Intrinsically Motivated Skill Discovery. In Multi-Disciplinary
Conference on Reinforcement Learning and Decision Making.

Bagaria, A., Koch, A. D. M., Rodriguez-Sanchez, R., Lobel, S., and Konidaris, G. (2025b).
Intrinsically Motivated Discovery of Temporally Abstract Graph-based Models of the
World. Reinforcement Learning Journal.

Bagaria, A. and Konidaris, G. (2020). Option Discovery using Deep Skill Chaining. In
International Conference on Learning Representations.

Bagaria, A. and Schaul, T. (2023). Scaling Goal-based Exploration via Pruning Proto-goals.
In International Joint Conference on Artificial Intelligence.

83

Bagaria, A., Senthil, J., Slivinski, M., and Konidaris, G. (2021a). Robustly learning
composable options in deep reinforcement learning. In Proceedings of the 30th International
Joint Conference on Artificial Intelligence.

Bagaria, A., Senthil, J. K., and Konidaris, G. (2021b). Skill discovery for exploration and
planning using deep skill graphs. In International Conference on Machine Learning.

Bahdanau, D., Hill, F., Leike, J., Hughes, E., Hosseini, S., Kohli, P., and Grefenstette, E.
(2018). Learning to Understand Goal Specifications by Modelling Reward. In International
Conference on Learning Representations.

Bai, H., Zhou, Y., Cemri, M., Pan, J., Suhr, A., Levine, S., and Kumar, A. (2024). DigiRL:
Training In-The-Wild Device-Control Agents with Autonomous Reinforcement Learning.
Neural Information Processing Systems.

Bai, Y., Kadavath, S., Kundu, S., Askell, A., Kernion, J., Jones, A., Chen, A., Goldie, A.,
Mirhoseini, A., McKinnon, C., Chen, C., Olsson, C., Olah, C., Hernandez, D., Drain, D.,
Ganguli, D., Li, D., Tran-Johnson, E., Perez, E., Kerr, J., Mueller, J., Ladish, J., Landau,
J., Ndousse, K., Lukošiūtė, K., Lovitt, L., Sellitto, M., Elhage, N., Schiefer, N., Mercado,
N., DasSarma, N., Lasenby, R., Larson, R., Ringer, S., Johnston, S., Kravec, S., Showk,
S. E., Fort, S., Lanham, T., Telleen-Lawton, T., Conerly, T., Henighan, T. J., Hume,
T., Bowman, S., Hatfield-Dodds, Z., Mann, B., Amodei, D., Joseph, N., McCandlish, S.,
Brown, T. B., and Kaplan, J. (2022). Constitutional AI: Harmlessness from AI Feedback.
arXiv.

Baranes, A. and Oudeyer, P.-Y. (2013). Active learning of inverse models with intrinsically
motivated goal exploration in robots. Robotics and Autonomous Systems, 61:49–73.

Barreto, A., Borsa, D., Hou, S., Comanici, G., Aygün, E., Hamel, P., Toyama, D., Hunt,
J. J., Mourad, S., Silver, D., and Precup, D. (2019a). The Option Keyboard: Combining
Skills in Reinforcement Learning. Neural Information Processing Systems.

Barreto, A., Borsa, D., Quan, J., Schaul, T., Silver, D., Hessel, M., Mankowitz, D. J., Źıdek,
A., and Munos, R. (2019b). Transfer in Deep Reinforcement Learning Using Successor
Features and Generalised Policy Improvement. International Conference on Machine
Learning.

Barreto, A., Dabney, W., Munos, R., Hunt, J. J., Schaul, T., van Hasselt, H. P., and Silver,
D. (2017). Successor features for transfer in reinforcement learning. Neural Information
Processing Systems.

Barreto, A., Hou, S., Borsa, D., Silver, D., and Precup, D. (2020). Fast reinforcement
learning with generalized policy updates. Proceedings of the National Academy of Sciences,
117:30079–30087.

Barto, A., Singh, S., and Chentanez, N. (2004). Intrinsically motivated learning of hierarchical
collections of skills. Proceedings of the 3rd International Conference on Development and
Learning.

84

Discovering Temporal Structure: An Overview of Hierarchical RL

Barto, A. G. and Şimşek, Ö. (2005). Intrinsic motivation for reinforcement learning systems.
In Proceedings of the thirteenth yale workshop on adaptive and learning systems, pages
113–118. Yale University Press New Haven, CO, USA.

Bastani, O., Pu, Y., and Solar-Lezama, A. (2018). Verifiable reinforcement learning via
policy extraction. Neural Information Processing Systems.

Bauer, J., Baumli, K., Behbahani, F. M. P., Bhoopchand, A., Bradley-Schmieg, N., Chang,
M., Clay, N., Collister, A., Dasagi, V., Gonzalez, L., Gregor, K., Hughes, E., Kashem,
S., Loks-Thompson, M., Openshaw, H., Parker-Holder, J., Pathak, S., Nieves, N. P.,
Rakicevic, N., Rocktäschel, T., Schroecker, Y., Singh, S., Sygnowski, J., Tuyls, K., York,
S., Zacherl, A., and Zhang, L. M. (2023). Human-Timescale Adaptation in an Open-Ended
Task Space. In International Conference on Machine Learning.

Baumli, K., Baveja, S., Behbahani, F. M. P., Chan, H., Comanici, G., Flennerhag, S.,
Gazeau, M., Holsheimer, K., Horgan, D., Laskin, M., Lyle, C., Masoom, H., McKinney,
K., Mnih, V., Neitz, A., Pardo, F., Parker-Holder, J., Quan, J., Rocktaschel, T., Sahni, H.,
Schaul, T., Schroecker, Y., Spencer, S., Steigerwald, R., Wang, L., and Zhang, L. (2023).
Vision-Language Models as a Source of Rewards. arXiv.

Baumli, K., Warde-Farley, D., Hansen, S., and Mnih, V. (2021). Relative Variational Intrinsic
Control. In The Association for the Advancement of Artificial Intelligence.

Beattie, C., Leibo, J. Z., Teplyashin, D., Ward, T., Wainwright, M., Küttler, H., Lefrancq,
A., Green, S., Valdés, V., Sadik, A., Schrittwieser, J., Anderson, K., York, S., Cant, M.,
Cain, A., Bolton, A., Gaffney, S., King, H., Hassabis, D., Legg, S., and Petersen, S. (2016).
DeepMind Lab. arXiv.

Beck, J., Vuorio, R., Liu, E. Z., Xiong, Z., Zintgraf, L. M., Finn, C., and Whiteson, S. (2023).
A Survey of Meta-Reinforcement Learning. Foundations and Trends in Machine Learning.

Bellemare, M., Naddaf, Y., Veness, J., and Bowling, M. (2012). The Arcade Learning
Environment: An Evaluation Platform for General Agents. Journal of Artificial Intelligence
Research, 47.

Bellemare, M. G., Candido, S., Castro, P. S., Gong, J., Machado, M. C., Moitra, S., Ponda,
S. S., and Wang, Z. (2020). Autonomous navigation of stratospheric balloons using
reinforcement learning. Nature, 588:77–82.

Bellemare, M. G., Ostrovski, G., Guez, A., Thomas, P. S., and Munos, R. (2016a). Increasing
the Action Gap: New Operators for Reinforcement Learning. In The Association for the
Advancement of Artificial Intelligence.

Bellemare, M. G., Srinivasan, S., Ostrovski, G., Schaul, T., Saxton, D., and Munos, R.
(2016b). Unifying Count-Based Exploration and Intrinsic Motivation. In Neural Informa-
tion Processing Systems.

Bellman, R. (1957). Dynamic Programming. Science, 153:34–37.

85

Bengio, Y., Louradour, J., Collobert, R., and Weston, J. (2009). Curriculum learning. In
International Conference on Machine Learning.

Berlyne, D. (1965). Conflict, Arousal and Curiosity. McGraw Hill.

Bertsekas, D. P. (1995). Dynamic Programming and Optimal Control, Two Volume Set.
Athena Scientific.

Boutilier, C., Dearden, R., and Goldszmidt, M. (2000). Stochastic dynamic programming
with factored representations. Artificial Intelligence, 121(1-2):49–107.

Bradley, R. A. and Terry, M. E. (1952). Rank Analysis of Incomplete Block Designs: I. The
Method of Paired Comparisons. Biometrika, 39:324.

Bradtke, S. J. and Duff, M. O. (1994). Reinforcement Learning Methods for Continuous-Time
Markov Decision Problems. In Neural Information Processing Systems.

Brohan, A., Brown, N., and et al, J. C. (2023). RT-2: Vision-Language-Action Models
Transfer Web Knowledge to Robotic Control. In Conference on Robot Learning.

Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., Neelakantan, A.,
Shyam, P., Sastry, G., Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G., Henighan,
T. J., Child, R., Ramesh, A., Ziegler, D. M., Wu, J., Winter, C., Hesse, C., Chen, M.,
Sigler, E., Litwin, M., Gray, S., Chess, B., Clark, J., Berner, C., McCandlish, S., Radford,
A., Sutskever, I., and Amodei, D. (2020). Language Models are Few-Shot Learners. Neural
Information Processing Systems.

Brunskill, E. and Li, L. (2014). PAC-inspired Option Discovery in Lifelong Reinforcement
Learning. In International Conference on Machine Learning.

Burda, Y., Edwards, H., Storkey, A., and Klimov, O. (2019). Exploration by Random
Network Distillation. In International Conference on Learning Representations.

Burridge, R. R., Rizzi, A. A., and Koditschek, D. E. (1999). Sequential Composition
of Dynamically Dexterous Robot Behaviors. International Journal Robotics Research,
18(6):534–555.

Campero, A., Raileanu, R., Kuttler, H., Tenenbaum, J. B., Rocktäschel, T., and Grefen-
stette, E. (2021). Learning with {AMIG}o: Adversarially Motivated Intrinsic Goals. In
International Conference on Learning Representations.

Campos, V., Trott, A., Xiong, C., Socher, R., Giro-I-Nieto, X., and Torres, J. (2020). Explore,
Discover and Learn: Unsupervised Discovery of State-Covering Skills. In International
Conference on Machine Learning.

Carpenter, G. A. and Grossberg, S. (1988). A massively parallel architecture for a self-
organizing neural pattern recognition machine. Computer Vision Graphics Image Process-
ing, 37:54–115.

86

Discovering Temporal Structure: An Overview of Hierarchical RL

Carvalho, T. H., Tjhia, K., and Lelis, L. H. S. (2024). Reclaiming the Source of Programmatic
Policies: Programmatic versus Latent Spaces. In International Conference on Learning
Representations.

Carvalho, W. T., Filos, A., Lewis, R., Lee, H., and Singh, S. (2023). Composing Task
Knowledge with Modular Successor Feature Approximators. In International Conference
on Learning Representations.

Castro, P. and Precup, D. (2010). Using bisimulation for policy transfer in MDPs. In The
Association for the Advancement of Artificial Intelligence.

Castro, P. S. (2020). Scalable methods for computing state similarity in deterministic markov
decision processes. In The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI
2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference,
IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence,
EAAI 2020, New York, NY, USA, February 7-12, 2020, pages 10069–10076.

Chen, B., Zhu, C., Agrawal, P., Zhang, K., and Gupta, A. (2023). Self-Supervised Reinforce-
ment Learning that Transfers using Random Features. In Neural Information Processing
Systems.

Chevalier-Boisvert, M., Dai, B., Towers, M., Perez-Vicente, R. D. L., Willems, L., Lahlou,
S., Pal, S., Castro, P. S., and Terry, J. K. (2023). Minigrid & Miniworld: Modular &
Customizable Reinforcement Learning Environments for Goal-Oriented Tasks. In Neural
Information Processing Systems.

Choi, J., Sharma, A., Lee, H., Levine, S., and Gu, S. S. (2021). Variational Empowerment
as Representation Learning for Goal-Based Reinforcement Learning. In International
Conference on Machine Learning.

Chua, R., Ghosh, A., Kaplanis, C., Richards, B. A., and Precup, D. (2024). Learning
Successor Features the Simple Way. In Neural Information Processing Systems.

Chung, F. R. (1997). Spectral graph theory. American Mathematical Society.

Colas, C., Akakzia, A., Oudeyer, P.-Y., Chetouani, M., and Sigaud, O. (2020a). Language-
Conditioned Goal Generation: a New Approach to Language Grounding for RL. arXiv.

Colas, C., Karch, T., Lair, N., Dussoux, J.-M., Moulin-Frier, C., Dominey, P. F., and
Oudeyer, P.-Y. (2020b). Language as a Cognitive Tool to Imagine Goals in Curiosity-
Driven Exploration. Neural Information Processing Systems.

Colas, C., Karch, T., Sigaud, O., and Oudeyer, P.-Y. (2020c). Autotelic Agents with Intrin-
sically Motivated Goal-Conditioned Reinforcement Learning: A Short Survey. Journal of
Artificial Intelligence Research, 74:1159–1199.

Colas, C., Karch, T., Sigaud, O., and Oudeyer, P.-Y. (2022). Autotelic agents with
intrinsically motivated goal-conditioned reinforcement learning: a short survey. Journal
of Artificial Intelligence Research, 74:1159–1199.

87

Colas, C., Oudeyer, P.-Y., Sigaud, O., Fournier, P., and Chetouani, M. (2018). CURIOUS:
Intrinsically Motivated Modular Multi-Goal Reinforcement Learning. In International
Conference on Machine Learning.

Colas, C., Teodorescu, L., Oudeyer, P.-Y., Yuan, X., and Côté, M.-A. (2023). Augmenting
Autotelic Agents with Large Language Models. In Conference on Lifelong Learning Agents.

Colburn, T. R. and Shute, G. M. (2007). Abstraction in Computer Science. Minds and
Machines, 17(2):169–184.

Coulom, R. (2006). Efficient Selectivity and Backup Operators in Monte-Carlo Tree Search.
In Computers and Games.

Cui, Y., Niekum, S., Gupta, A., Kumar, V., and Rajeswaran, A. (2022). Can Foundation
Models Perform Zero-Shot Task Specification For Robot Manipulation? In Conference on
Learning for Dynamics & Control.

Cully, A., Clune, J., Tarapore, D., and Mouret, J.-B. (2015). Robots that can adapt like
animals. Nature, 521(7553):503–507.

da Silva, B. C., Konidaris, G. D., and Barto, A. G. (2012). Learning Parameterized Skills.
In International Conference on Machine Learning.

Dai, Z., Yang, Z., Yang, Y., Carbonell, J. G., Le, Q. V., and Salakhutdinov, R. (2019).
Transformer-XL: Attentive Language Models beyond a Fixed-Length Context. In Associ-
ation for Computational Linguistics.

Daniel, C., van Hoof, H., Peters, J., and Neumann, G. (2016). Probabilistic inference for
determining options in reinforcement learning. Machine Learning, 104:337–357.

Dayan, P. (1993). Improving Generalization for Temporal Difference Learning: The Successor
Representation. Neural Computation, 5(4):613–624.

Dayan, P. and Hinton, G. E. (1993). Feudal reinforcement learning. In Advances in neural
information processing systems, pages 271–278.

Denil, M., Colmenarejo, S. G., Cabi, S., Saxton, D., and De Freitas, N. (2017). Programmable
agents. Neural Information Processing Systems.

Dennis, M., Jaques, N., Vinitsky, E., Bayen, A. M., Russell, S. J., Critch, A., and Levine,
S. (2020). Emergent Complexity and Zero-shot Transfer via Unsupervised Environment
Design. Neural Information Processing Systems.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. (2019). BERT: Pre-training of Deep
Bidirectional Transformers for Language Understanding. In North American Chapter of
the Association for Computational Linguistics.

Dietterich, T. G. et al. (1998). The MAXQ Method for Hierarchical Reinforcement Learning.
In International Conference on Machine Learning.

88

Discovering Temporal Structure: An Overview of Hierarchical RL

Ding, L., Zhang, J., Clune, J., Spector, L., and Lehman, J. (2024). Quality Diversity through
Human Feedback. International Conference on Machine Learning.

Dong, Q., Li, L., Dai, D., Zheng, C., Wu, Z., Chang, B., Sun, X., Xu, J., and Sui, Z. (2022).
A survey on in-context learning. Empirical Methods in Natural Language Processing.

Du, Y., Konyushkova, K., Denil, M., Raju, A. S., Landon, J., Hill, F., de Freitas, N., and
Cabi, S. (2023a). Vision-Language Models as Success Detectors. Conference on Lifelong
Learning Agents.

Du, Y., Kosoy, E., Dayan, A., Rufova, M., Abbeel, P., and Gopnik, A. (2023b). What
can AI Learn from Human Exploration? Intrinsically-Motivated Humans and Agents in
Open-World Exploration. In Intrinsically-Motivated and Open-Ended Learning Workshop,
Neural Information Processing Systems.

Du, Y., Watkins, O., Wang, Z., Colas, C., Darrell, T., Abbeel, P., Gupta, A., and Andreas,
J. (2023c). Guiding Pretraining in Reinforcement Learning with Large Language Models.
In International Conference on Machine Learning.

Duan, Y., Schulman, J., Chen, X., Bartlett, P. L., Sutskever, I., and Abbeel, P. (2016). Rl2:
Fast reinforcement learning via slow reinforcement learning. arXiv.

Dulac-Arnold, G., Evans, R., van Hasselt, H., Sunehag, P., Lillicrap, T., Hunt, J., Mann,
T., Weber, T., Degris, T., and Coppin, B. (2015). Deep reinforcement learning in large
discrete action spaces. arXiv.

Ecoffet, A., Huizinga, J., Lehman, J., Stanley, K. O., and Clune, J. (2020). First return,
then explore. Nature, 590:580–586.

Erraqabi, A., Machado, M. C., Zhao, M., Sukhbaatar, S., Lazaric, A., Denoyer, L., and
Bengio, Y. (2022). Temporal abstractions-augmented temporally contrastive learning: An
alternative to the Laplacian in RL. In Uncertainty in Artificial Intelligence.

Evans, J. B. and Şimşek, Ö. (2023). Creating Multi-Level Skill Hierarchies in Reinforcement
Learning. In Neural Information Processing Systems.

Even-Dar, E., Mannor, S., Mansour, Y., and Mahadevan, S. (2006). Action elimination
and stopping conditions for the multi-armed bandit and reinforcement learning problems.
Journal of machine learning research, 7(6).

Eysenbach, B., Gupta, A., Ibarz, J., and Levine, S. (2019). Diversity is All You Need:
Learning Skills without a Reward Function. In International Conference on Learning
Representations.

Faldor, M., Zhang, J., Cully, A., and Clune, J. (2025). OMNI-EPIC: Open-endedness via
Models of human Notions of Interestingness with Environments Programmed in Code. In
International Conference on Learning Representations.

Fan, L., Wang, G., Jiang, Y., Mandlekar, A., Yang, Y., Zhu, H., Tang, A., Huang, D., Zhu,
Y., and Anandkumar, A. (2022). MineDojo: Building Open-Ended Embodied Agents
with Internet-Scale Knowledge. In Neural Information Processing Systems.

89

Fang, M., Zhou, C., Shi, B., Gong, B., Xu, J., and Zhang, T. (2018). DHER: Hindsight expe-
rience replay for dynamic goals. In International Conference on Learning Representations.

Fang, M., Zhou, T., Du, Y., Han, L., and Zhang, Z. (2019). Curriculum-guided hindsight
experience replay. Neural Information Processing Systems.

Farebrother, J., Greaves, J., Agarwal, R., Lan, C. L., Goroshin, R., Castro, P. S., and
Bellemare, M. G. (2023). Proto-Value Networks: Scaling Representation Learning with
Auxiliary Tasks. In International Conference on Learning Representations.

Ferns, N., Panangaden, P., and Precup, D. (2004). Metrics for finite Markov decision
processes. In Uncertainty in Artificial Intelligence.

Ferns, N., Panangaden, P., and Precup, D. (2011). Bisimulation metrics for continuous
Markov decision processes. SIAM Journal on Computing, 40(6):1662–1714.

Fikes, R. and Nilsson, N. J. (1971). STRIPS: A New Approach to the Application of
Theorem Proving to Problem Solving. Artificial Intelligence, 2(3/4):189–208.

Finn, C., Abbeel, P., and Levine, S. (2017). Model-Agnostic Meta-Learning for Fast
Adaptation of Deep Networks. International Conference on Machine Learning.

Florensa, C., Held, D., Geng, X., and Abbeel, P. (2018). Automatic Goal Generation for
Reinforcement Learning Agents. In International Conference on Machine Learning.

Ford, L. R. and Fulkerson, D. R. (1962). Flows in Networks. Princeton University Press.

Forestier, S., Mollard, Y., and Oudeyer, P.-Y. (2017). Intrinsically Motivated Goal Explo-
ration Processes with Automatic Curriculum Learning. J. Mach. Learn. Res., 23:152:1–
152:41.

Forestier, S. and Oudeyer, P.-Y. (2016). Modular active curiosity-driven discovery of tool
use. International Conference on Intelligent Robots and Systems.

Fox, R., Krishnan, S., Stoica, I., and Goldberg, K. (2017). Multi-level discovery of deep
options. arXiv.

Frans, K., Ho, J., Chen, X., Abbeel, P., and Schulman, J. (2018). Meta Learning Shared
Hierarchies. In International Conference on Learning Representations.

Fu, H., Yu, S., Tiwari, S., Littman, M., and Konidaris, G. (2023). Meta-learning Parameter-
ized Skills. In International Conference on Machine Learning.

Fu, J., Korattikara, A., Levine, S., and Guadarrama, S. (2019). From Language to Goals:
Inverse Reinforcement Learning for Vision-Based Instruction Following. In International
Conference on Learning Representations.

Fu, Y., Zhang, H., Wu, D., Xu, W., and Boulet, B. (2024). FuRL: Visual-Language Models
as Fuzzy Rewards for Reinforcement Learning. In International Conference on Machine
Learning.

90

Discovering Temporal Structure: An Overview of Hierarchical RL

Fulda, N., Ricks, D., Murdoch, B., and Wingate, D. (2017). What can you do with a rock?
affordance extraction via word embeddings. International Joint Conference on Artificial
Intelligence.

Furelos-Blanco, D., Law, M., Jonsson, A., Broda, K., and Russo, A. (2023). Hierarchies of
reward machines. In International Conference on Machine Learning, pages 10494–10541.
PMLR.

Gao, C.-X., Wu, C., Cao, M., Kong, R., Zhang, Z., and Yu, Y. (2024). Act: empowering
decision transformer with dynamic programming via advantage conditioning. In Proceedings
of the AAAI Conference on Artificial Intelligence, volume 38, pages 12127–12135.

Gelada, C., Kumar, S., Buckman, J., Nachum, O., and Bellemare, M. G. (2019). Deepmdp:
Learning continuous latent space models for representation learning. In International
Conference on Machine Learning.

Gomez, D., Bowling, M., and Machado, M. C. (2023). Proper Laplacian Representation
Learning. International Conference on Learning Representations.

Gopnik, A. (2024). Empowerment as Causal Learning, Causal Learning as Empowerment: A
bridge between Bayesian causal hypothesis testing and reinforcement learning. Intrinsically
Motivated Open-ended Learning Workshop, Neural Information Processing Systems.

Gopnik, A., Meltzoff, A., and Kuhl, P. (2009). The Scientist in the Crib: What Early
Learning Tells Us About the Mind. HarperCollins.

Gopnik, A. and Wellman, H. M. (2012). Reconstructing constructivism: causal models,
Bayesian learning mechanisms, and the theory theory. Psychological bulletin, 138(6):1085.

Grauman, K., Westbury, A., Byrne, E., Chavis, Z., Furnari, A., Girdhar, R., and et al., J. H.
(2021). Ego4D: Around the World in 3,000 Hours of Egocentric Video. Conference on
Computer Vision and Pattern Recognition.

Gregor, K., Rezende, D. J., and Wierstra, D. (2017). Variational Intrinsic Control. In
International Conference on Learning Representations.

Guo, Z. D., Thakoor, S., Pislar, M., Pires, B. Á., Altch’e, F., Tallec, C., Saade, A.,
Calandriello, D., Grill, J.-B., Tang, Y., Válko, M., Munos, R., Azar, M. G., and Piot, B.
(2022). Byol-explore: Exploration by bootstrapped prediction. ArXiv.

Gupta, A., Kumar, V., Lynch, C., Levine, S., and Hausman, K. (2019). Relay policy learning:
Solving long-horizon tasks via imitation and reinforcement learning. Conference on Robot
Learning.

Gupta, A., Mendonca, R., Liu, Y., Abbeel, P., and Levine, S. (2018). Meta-Reinforcement
Learning of Structured Exploration Strategies. In Bengio, S., Wallach, H., Larochelle, H.,
Grauman, K., Cesa-Bianchi, N., and Garnett, R., editors, Advances in Neural Information
Processing Systems, volume 31. Curran Associates, Inc.

91

Haarnoja, T., Pong, V. H., Zhou, A., Dalal, M., Abbeel, P., and Levine, S. (2018). Compos-
able Deep Reinforcement Learning for Robotic Manipulation. International Conference
on Robotics and Automation.

Hafner, D., Lee, K.-H., Fischer, I., and Abbeel, P. (2022). Deep Hierarchical Planning from
Pixels. In Neural Information Processing Systems.

Hafner, D., Ortega, P. A., Ba, J., Parr, T., Friston, K. J., and Heess, N. (2020). Action
and Perception as Divergence Minimization. In International Conference on Learning
Representations.

Hansen, S., Dabney, W., Barreto, A., Warde-Farley, D., de Wiele, T. V., and Mnih, V.
(2020). Fast Task Inference with Variational Intrinsic Successor Features. In International
Conference on Learning Representations.

Hansen-Estruch, P., Zhang, A., Nair, A., Yin, P., and Levine, S. (2022). Bisimulation makes
analogies in goal-conditioned reinforcement learning. In International Conference on
Machine Learning.

Harb, J., Bacon, P.-L., Klissarov, M., and Precup, D. (2018). When Waiting is not an Option
: Learning Options with a Deliberation Cost. The Association for the Advancement of
Artificial Intelligence.

Harlow, H. (1950). Learning and satiation of response in intrinsically motivated complex
puzzle performance by monkeys. In Journal of comparative and physiological psychology.

Harutyunyan, A., Dabney, W., Borsa, D., Heess, N., Munos, R., and Precup, D. (2019a).
The termination critic. International Conference on Artificial Intelligence and Statistics.

Harutyunyan, A., Vrancx, P., Hamel, P., Nowé, A., and Precup, D. (2019b). Per-Decision
Option Discounting. In International Conference on Machine Learning.

Hasanbeig, M., Jeppu, N. Y., Abate, A., Melham, T., and Kroening, D. (2021). DeepSynth:
Automata synthesis for automatic task segmentation in deep reinforcement learning. In
The Association for the Advancement of Artificial Intelligence.

Hengst, B. et al. (2002). Discovering hierarchy in reinforcement learning with HEXQ. In
International Conference on Machine Learning.

Higgins, I., Matthey, L., Pal, A., Burgess, C., Glorot, X., Botvinick, M., Mohamed, S.,
and Lerchner, A. (2016). beta-vae: Learning basic visual concepts with a constrained
variational framework. In International conference on learning representations.

Hinton, G. E. and Zemel, R. (1993). Autoencoders, Minimum Description Length and
Helmholtz Free Energy. In Neural Information Processing Systems.

Ho, M. K., Abel, D., Griffiths, T. L., and Littman, M. L. (2019). The value of abstraction.
Current opinion in behavioral sciences, 29:111–116.

Hoare, C. A. R. (1969). An axiomatic basis for computer programming. Association for
Computing Machinery, 12(10):576–580.

92

Discovering Temporal Structure: An Overview of Hierarchical RL

Hochreiter, S. and Schmidhuber, J. (1997). Long Short-Term Memory. Neural Computation,
9:1735–1780.

Honkela, A. and Valpola, H. (2004). Variational learning and bits-back coding: an
information-theoretic view to Bayesian learning. IEEE Transactions on Neural Net-
works, 15(4):800–810.

Hu, X. and Leung, H.-f. (2023). Provably (More) Sample-Efficient Offline RL with Options.
In Neural Information Processing Systems.

Huang, T., Chen, K., Wei, W., Li, J., Long, Y., and Dou, Q. (2023). Value-Informed Skill
Chaining for Policy Learning of Long-Horizon Tasks with Surgical Robot. In International
Conference on Intelligent Robots and Systems.

Hughes, E., Dennis, M., Parker-Holder, J., Behbahani, F. M. P., Mavalankar, A., Shi,
Y., Schaul, T., and Rocktaschel, T. (2024). Open-Endedness is Essential for Artificial
Superhuman Intelligence. International Conference on Machine Learning.

Hung, C.-C., Lillicrap, T., Abramson, J., Wu, Y., Mirza, M., Carnevale, F., Ahuja, A., and
Wayne, G. (2019). Optimizing agent behavior over long time scales by transporting value.
Nature Communications, 10:5223.

Hunt, J. J., Barreto, A., Lillicrap, T. P., and Heess, N. M. O. (2018). Entropic Policy Com-
position with Generalized Policy Improvement and Divergence Correction. International
Conference on Machine Learning.

Hutsebaut-Buysse, M., Mets, K., and Latré, S. (2022). Hierarchical Reinforcement Learning:
A Survey and Open Research Challenges. Machine Learning and Knowledge Extraction,
4(1):172–221.

Icarte, R. T., Klassen, T. Q., Valenzano, R., and McIlraith, S. A. (2022). Reward machines:
Exploiting reward function structure in reinforcement learning. Journal of Artificial
Intelligence Research, 73:173–208.

Ivanov, A., Bagaria, A., and Konidaris, G. (2024). Discovering Options that Minimize
Average Planning Time. In The Association for the Advancement of Artificial Intelligence.

Jain, A., Khetarpal, K., and Precup, D. (2018). Safe option-critic: learning safety in the
option-critic architecture. The Knowledge Engineering Review, 36.

James, S. D., Rosman, B., and Konidaris, G. D. (2019). Learning portable representations
for high-level planning. In International Conference on Machine Learning.

Janner, M., Fu, J., Zhang, M., and Levine, S. (2019). When to Trust Your Model: Model-
Based Policy Optimization. In Neural Information Processing Systems.

Jaques, N., Lazaridou, A., Hughes, E., Gülçehre, Ç., Ortega, P. A., Strouse, D., Leibo, J. Z.,
and de Freitas, N. (2019). Social Influence as Intrinsic Motivation for Multi-Agent Deep
Reinforcement Learning. In International Conference on Machine Learning.

93

Jiang, M., Dennis, M., Parker-Holder, J., Foerster, J. N., Grefenstette, E., and Rocktaschel,
T. (2021). Replay-Guided Adversarial Environment Design. In Neural Information
Processing Systems.

Jiang, Y., Gu, S. S., Murphy, K. P., and Finn, C. (2019). Language as an Abstraction for
Hierarchical Deep Reinforcement Learning. Neural Information Processing Systems.

Jiang, Y., Liu, E., Eysenbach, B., Kolter, J. Z., and Finn, C. (2022). Learning Options via
Compression. Neural Information Processing Systems.

Jiang, Z., Zhang, T., Janner, M., Li, Y., Rocktäschel, T., Grefenstette, E., and Tian, Y.
(2023). Efficient planning in a compact latent action space. International Conference on
Learning Representations.

Jinnai, Y., Abel, D., Hershkowitz, D., Littman, M., and Konidaris, G. (2019a). Finding
Options that Minimize Planning Time. In International Conference on Machine Learning.

Jinnai, Y., Park, J. W., Abel, D., and Konidaris, G. (2019b). Discovering Options for
Exploration by Minimizing Cover Time. In International Conference on Machine Learning.

Jinnai, Y., Park, J. W., Machado, M. C., and Konidaris, G. (2020). Exploration in
Reinforcement Learning with Deep Covering Options. In International Conference on
Learning Representations.

Johnson, M., Hofmann, K., Hutton, T., and Bignell, D. (2016). The Malmö Platform for
Artificial Intelligence Experimentation. In International Joint Conference on Artificial
Intelligence.

Jong, N. K., Hester, T., and Stone, P. (2008). The Utility of Temporal Abstraction in
Reinforcement Learning. In International Joint Conference on Autonomous Agents and
Multiagent Systems.

Jonsson, A. and Barto, A. G. (2006). Causal Graph Based Decomposition of Factored MDPs.
Journal of Machine Learning Research, 7:2259–2301.

Jothimurugan, K., Alur, R., and Bastani, O. (2019). A composable specification language
for reinforcement learning tasks. Neural Information Processing Systems.

Kaelbling, L. P. (1993a). Learning to Achieve Goals. In International Joint Conference on
Artificial Intelligence.

Kaelbling, L. P. (1993b). Learning to achieve goals. In International Joint Conference on
Artificial Intelligence.

Kahneman, D. (2011). Thinking, Fast and Slow. Farrar, Straus and Giroux.

Kamat, A. and Precup, D. (2020). Diversity-Enriched Option-Critic. arXiv.

94

Discovering Temporal Structure: An Overview of Hierarchical RL

Kanervisto, A., Milani, S., Ramanauskas, K., Topin, N., Lin, Z., Li, J., yong Shi, J., Ye,
D., Fu, Q., Yang, W., Hong, W., Huang, Z.-H., Chen, H., Zeng, G., Lin, Y., Micheli,
V., Alonso, E., Fleuret, F., Nikulin, A., Belousov, Y., Svidchenko, O., and Shpilman, A.
(2021). MineRL Diamond 2021 Competition: Overview, Results, and Lessons Learned.
Neural Information Processing Systems.

Kang, M. and Oh, S. (2022). Deep latent-space sequential skill chaining from incomplete
demonstrations. Intelligent Serice Robotics, 15(2):203–213.

Kaplan, F. and Oudeyer, P.-Y. (2003). Maximizing Learning Progress: An Internal Reward
System for Development. In Embodied Artificial Intelligence.

Kazemitabar, S. J. and Beigy, H. (2009). Using Strongly Connected Components as a Basis
for Autonomous Skill Acquisition in Reinforcement Learning. In Advances in Neural
Networks.

Kearns, M. and Singh, S. (2002). Near-optimal reinforcement learning in polynomial time.
Machine Learning, 49(2-3):209–232.

Khetarpal, K., Ahmed, Z., Comanici, G., Abel, D., and Precup, D. (2020a). What can i do
here? A theory of affordances in reinforcement learning. In International Conference on
Machine Learning.

Khetarpal, K., Ahmed, Z., Comanici, G., and Precup, D. (2021). Temporally abstract partial
models. Advances in Neural Information Processing Systems.

Khetarpal, K., Klissarov, M., Chevalier-Boisvert, M., Bacon, P.-L., and Precup, D. (2020b).
Options of interest: Temporal abstraction with interest functions. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 34, pages 4444–4451.

Khetarpal, K., Riemer, M., Rish, I., and Precup, D. (2020c). Towards Continual Reinforce-
ment Learning: A Review and Perspectives. Journal of Artificial Intelligence Research,
75:1401–1476.

Kim, H. and Mnih, A. (2018). Disentangling by Factorising. In International Conference on
Machine Learning.

Kim, T., Ahn, S., and Bengio, Y. (2019). Variational temporal abstraction. Neural
Information Processing Systems.

Kingma, D. P. and Welling, M. (2014). Auto-Encoding Variational Bayes. In International
Conference on Learning Representations.

Kipf, T., Li, Y., Dai, H., Zambaldi, V., Sanchez-Gonzalez, A., Grefenstette, E., Kohli, P.,
and Battaglia, P. (2019). Compile: Compositional imitation learning and execution. In
International Conference on Machine Learning.

Klissarov, M., Bacon, P.-L., Harb, J., and Precup, D. (2017). Learning options end-to-end
for continuous action tasks. Hierarchical Reinforcement Learning Workshop, Neural
Information Processing Systems.

95

Klissarov, M., D’Oro, P., Sodhani, S., Raileanu, R., Bacon, P.-L., Vincent, P., Zhang, A.,
and Henaff, M. (2024). Motif: Intrinsic Motivation from Artificial Intelligence Feedback.
International Conference on Learning Representations.

Klissarov, M., D’Oro, P., Sodhani, S., Raileanu, R., Bacon, P.-L., Vincent, P., Zhang, A.,
and Henaff, M. (2025a). MaestroMotif: Skill Design from Artificial Intelligence Feedback.
In International Conference on Learning Representations.

Klissarov, M., Hjelm, D., Toshev, A., and Mazoure, B. (2025b). On the Modeling Capabilities
of Large Language Models for Sequential Decision Making. In International Conference
on Learning Representations.

Klissarov, M. and Machado, M. C. (2023). Deep Laplacian-based Options for Temporally-
Extended Exploration. In International Conference on Machine Learning.

Klissarov, M. and Precup, D. (2020). Reward Propagation Using Graph Convolutional
Networks. Neural Information Processing Systems.

Klissarov, M. and Precup, D. (2021). Flexible Option Learning. In Neural Information
Processing Systems.

Klyubin, A. S., Polani, D., and Nehaniv, C. L. (2005). All Else Being Equal Be Empowered.
In Advances in Artificial Life.

Kolve, E., Mottaghi, R., Han, W., VanderBilt, E., Weihs, L., Herrasti, A., Deitke, M.,
Ehsani, K., Gordon, D., Zhu, Y., Kembhavi, A., Gupta, A. K., and Farhadi, A. (2017).
AI2-THOR: An Interactive 3D Environment for Visual AI. arXiv.

Kompella, V. R., Stollenga, M. F., Luciw, M. D., and Schmidhuber, J. (2017). Continual
curiosity-driven skill acquisition from high-dimensional video inputs for humanoid robots.
Artificial Intelligence, 247:313–335.

Konidaris, G. (2019). On the necessity of abstraction. Current opinion in behavioral sciences,
29:1–7.

Konidaris, G., Kuindersma, S., Grupen, R., and Barto, A. (2010). Constructing skill trees
for reinforcement learning agents from demonstration trajectories. Neural Information
Processing Systems.

Konidaris, G. D. and Barto, A. G. (2007). Building Portable Options: Skill Transfer in
Reinforcement Learning. In International Joint Conference on Artificial Intelligence.

Konidaris, G. D. and Barto, A. G. (2009). Skill Discovery in Continuous Reinforcement
Learning Domains using Skill Chaining. In Neural Information Processing Systems.

Konidaris, G. D., Kaelbling, L. P., and Lozano-Perez, T. (2018). From Skills to Symbols:
Learning Symbolic Representations for Abstract High-Level Planning. Journal of Artificial
Intelligence Research, 61:215–289.

96

Discovering Temporal Structure: An Overview of Hierarchical RL

Kovač, G., Laversanne-Finot, A., and Oudeyer, P.-Y. (2020). GRIMGEP: Learning Progress
for Robust Goal Sampling in Visual Deep Reinforcement Learning. IEEE Transactions
on Cognitive and Developmental Systems, 15:1396–1407.

Krishnan, S., Fox, R., Stoica, I., and Goldberg, K. (2017). Ddco: Discovery of deep
continuous options for robot learning from demonstrations. In Conference on Robot
Learning.

Kulkarni, T. D., Saeedi, A., Gautam, S., and Gershman, S. J. (2016). Deep Successor
Reinforcement Learning. arXiv.

Küttler, H., Nardelli, N., Miller, A. H., Raileanu, R., Selvatici, M., Grefenstette, E., and
Rocktäschel, T. (2020). The NetHack Learning Environment. In Neural Information
Processing Systems.

Kwon, M., Xie, S. M., Bullard, K., and Sadigh, D. (2023a). Reward Design with Language
Models. In The Eleventh International Conference on Learning Representations.

Kwon, T., Palo, N. D., and Johns, E. (2023b). Language Models as Zero-Shot Trajectory
Generators. In IEEE Robotics and Automation Letters.

Laskin, M., Liu, H., Peng, X. B., Yarats, D., Rajeswaran, A., and Abbeel, P. (2022). CIC:
Contrastive Intrinsic Control for Unsupervised Skill Discovery. arXiv.

LaValle, S. M. (1998). Rapidly-exploring random trees : a new tool for path planning. The
annual research report.

Le, H. M., Jiang, N., Agarwal, A., Dud́ık, M., Yue, Y., and Daumé, H. (2018). Hierarchical
Imitation and Reinforcement Learning. International Conference on Machine Learning.

Lee, Y., Lim, J. J., Anandkumar, A., and Zhu, Y. (2021). Adversarial Skill Chaining for
Long-Horizon Robot Manipulation via Terminal State Regularization. In Conference on
Robot Learning.

Lehman, J. and Stanley, K. O. (2011). Evolving a diversity of virtual creatures through
novelty search and local competition. Genetic and Evolutionary Computation Conference.

Lehnert, L., Laroche, R., and van Seijen, H. (2018). On Value Function Representation of
Long Horizon Problems. In The Association for the Advancement of Artificial Intelligence.

Leibfried, F., Pascual-Dı́az, S., and Grau-Moya, J. (2019). A Unified Bellman Optimality
Principle Combining Reward Maximization and Empowerment. In Neural Information
Processing Systems.

Levine, S., Kumar, A., Tucker, G., and Fu, J. (2020). Offline reinforcement learning: Tutorial,
review, and perspectives on open problems. arXiv preprint arXiv:2005.01643.

Levy, A., Konidaris, G., Platt, R., and Saenko, K. (2019). Hierarchical Reinforcement
Learning with Hindsight. In International Conference on Learning Representations.

97

Levy, A., Rammohan, S., Allievi, A., Niekum, S., and Konidaris, G. (2023). Hierarchical
Empowerment: Towards Tractable Empowerment-Based Skill Learning.

Li, H., Yang, X., Wang, Z., Zhu, X., Zhou, J., Qiao, Y., Wang, X., Li, H., Lu, L., and Dai,
J. (2023). Auto MC-Reward: Automated Dense Reward Design with Large Language
Models for Minecraft. Computer Vision and Pattern Recognition.

Li, L., Walsh, T. J., and Littman, M. L. (2006). Towards a unified theory of state abstraction
for MDPs. International Symposium on Artificial Intelligence and Mathematics.

Liang, J., Huang, W., Xia, F., Xu, P., Hausman, K., Ichter, B., Florence, P. R., and Zeng, A.
(2022). Code as Policies: Language Model Programs for Embodied Control. 2023 IEEE
International Conference on Robotics and Automation.

Lifshitz, S., Paster, K., Chan, H., Ba, J., and McIlraith, S. A. (2023). STEVE-1: A
Generative Model for Text-to-Behavior in Minecraft. In Neural Information Processing
Systems.

Lightman, H., Kosaraju, V., Burda, Y., Edwards, H., Baker, B., Lee, T., Leike, J., Schulman,
J., Sutskever, I., and Cobbe, K. (2023). Let’s Verify Step by Step. arXiv.

Lin, L.-J. (1991). Self-improvement Based On Reinforcement Learning, Planning and
Teaching. In Birnbaum, L. A. and Collins, G. C., editors, Machine Learning Proceedings
1991, pages 323–327. Morgan Kaufmann.

Lin, Y.-A., Lee, C.-T., Yang, C.-H., Liu, G.-T., and Sun, S.-H. (2024). Hierarchical
Programmatic Option Framework. In Neural Information Processing Systems.

Lindemann, S. R. and LaValle, S. M. (2004). Incrementally Reducing Dispersion by Increasing
Voronoi Bias in RRTs. In International Conference on Robotics and Automation, volume 4,
pages 3251–3257.

Liu, G.-T., Hu, E.-P., Cheng, P.-J., Lee, H.-Y., and Sun, S.-H. (2023a). Hierarchical
programmatic reinforcement learning via learning to compose programs. In International
Conference on Machine Learning, pages 21672–21697. PMLR.

Liu, H., Trott, A., Socher, R., and Xiong, C. (2019). Competitive experience replay.
International Conference on Learning Representations.

Liu, J., Zu, L., He, L., and Wang, D. (2023b). Clue: Calibrated latent guidance for offline
reinforcement learning. In Conference on Robot Learning.

Liu, M., Machado, M. C., Tesauro, G., and Campbell, M. (2017). The Eigenoption-
Critic Framework. Hierarchical Reinforcement Learning Workshop, Neural Information
Processing Systems.

Liu, M., Zhu, M., and Zhang, W. (2022). Goal-Conditioned Reinforcement Learning:
Problems and Solutions. International Joint Conference on Artificial Intelligence.

98

Discovering Temporal Structure: An Overview of Hierarchical RL

Lo, C., Roice, K., Panahi, P. M., Jordan, S. M., White, A., Mihucz, G., Aminmansour, F.,
and White, M. (2024). Goal-Space Planning with Subgoal Models. Journal of Machine
Learning Research, 25(330):1–57.

Lobel, S., Bagaria, A., and Konidaris, G. (2023). Flipping Coins to Estimate Pseudocounts
for Exploration in Reinforcement Learning. In Proceedings of the 40th International
Conference on Machine Learning, volume 202 of Proceedings of Machine Learning Research,
pages 22594–22613. PMLR.

Lozano-Perez, T., Mason, M. T., and Taylor, R. H. (1984). Automatic synthesis of fine-motion
strategies for robots. The International Journal of Robotics Research, 3(1):3–24.

Luketina, J., Nardelli, N., Farquhar, G., Foerster, J. N., Andreas, J., Grefenstette, E.,
Whiteson, S., and Rocktäschel, T. (2019). A Survey of Reinforcement Learning Informed
by Natural Language. International Joint Conference on Artificial Intelligence.

Luo, Z., Ni, T., Bacon, P.-L., Precup, D., and Si, X. (2025). Understanding behavioral
metric learning: A large-scale study on distracting reinforcement learning environments.
arXiv preprint arXiv:2506.00563.

Luo, Z., Zhang, Y., and Wang, Z. (2023). Does Hierarchical Reinforcement Learning
Outperform Standard Reinforcement Learning in Goal-Oriented Environments? In Goal-
Conditioned Reinforcement Learning Workshop, Neural Information Processing Systems.

Ma, C., Ashley, D. R., Wen, J., and Bengio, Y. (2020). Universal Successor Features for
Transfer Reinforcement Learning. arXiv.

Ma, Y. J., Liang, W., Wang, G., Huang, D.-A., Bastani, O., Jayaraman, D., Zhu, Y., Fan,
L., and Anandkumar, A. (2024). Eureka: Human-Level Reward Design via Coding Large
Language Models. International Conference on Learning Representations.

Machado, M. C. (2019). Efficient Exploration in Reinforcement Learning through Time-Based
Representations. PhD thesis, PhD thesis, University of Alberta, Canada.

Machado, M. C., Barreto, A., and Precup, D. (2023). Temporal Abstraction in Reinforcement
Learning with the Successor Representation. Journal of Machine Learning Research,
24(80):1–69.

Machado, M. C., Bellemare, M. G., and Bowling, M. (2017). A laplacian framework for
option discovery in reinforcement learning. In International Conference on Machine
Learning.

Machado, M. C., Bellemare, M. G., and Bowling, M. (2020). Count-based exploration with
the successor representation. In Proceedings of the Conference on Artificial Intelligence
(AAAI).

Machado, M. C. and Bowling, M. H. (2016). Learning Purposeful Behaviour in the Absence
of Rewards. Abstraction in Reinforcement Learning Workshop, International Conference
on Machine Learning.

99

Machado, M. C., Rosenbaum, C., Guo, X., Liu, M., Tesauro, G., and Campbell, M. (2018).
Eigenoption Discovery through the Deep Successor Representation. In International
Conference on Learning Representations.

Mahadevan, S. (2005). Proto-value functions: Developmental reinforcement learning. In
International Conference on Machine Learning.

Mahadevan, S. and Maggioni, M. (2007). Proto-value functions: A Laplacian framework
for learning representation and control in Markov decision processes. Journal of Machine
Learning Research, pages 2169–2231.

Mahmoudieh, P., Pathak, D., and Darrell, T. (2022). Zero-Shot Reward Specification via
Grounded Natural Language. In International Conference on Machine Learning.

Makoviychuk, V., Wawrzyniak, L., Guo, Y., Lu, M., Storey, K., Macklin, M., Hoeller, D.,
Rudin, N., Allshire, A., Handa, A., and State, G. (2021). Isaac Gym: High Performance
GPU-Based Physics Simulation For Robot Learning. Neural Information Processing
Systems.

Mannor, S., Menache, I., Hoze, A., and Klein, U. (2004). Dynamic abstraction in reinforce-
ment learning via clustering. In International Conference on Machine Learning.

Mason, M. (1985). The Mechanics of Manipulation. In IEEE International Conference on
Robotics and Automation.

Massari, F. S., Biehl, M., Meeden, L., and Kanai, R. (2021). Experimental Evidence
that Empowerment May Drive Exploration in Sparse-Reward Environments. IEEE
International Conference on Development and Learning.

Matiisen, T., Oliver, A., Cohen, T., and Schulman, J. (2017). Teacher–Student Curriculum
Learning. IEEE Transactions on Neural Networks and Learning Systems, 31:3732–3740.

McClinton, W., Levy, A., and Konidaris, G. D. (2021). HAC Explore: Accelerating
Exploration with Hierarchical Reinforcement Learning. arXiv.

McDermott, D., Ghallab, M., Howe, A., Knoblock, C., Ram, A., Veloso, M., Weld, D., and
Wilkins, D. (1998). PDDL—The Planning Domain Definition Language. Technical report,
Yale Center for Computational Vision and Control.

McGovern, A. and Barto, A. G. (2001). Automatic discovery of subgoals in reinforcement
learning using diverse density. In International Conference on Machine Learning.

Medeiros, L. C., Aleixo, D. S., and Lelis, L. H. S. (2022). What Can We Learn Even from
the Weakest? Learning Sketches for Programmatic Strategies. In The Association for the
Advancement of Artificial Intelligence.

Mees, O., Hermann, L., Rosete-Beas, E., and Burgard, W. (2022). CALVIN: A Benchmark
for Language-Conditioned Policy Learning for Long-Horizon Robot Manipulation Tasks.
IEEE Robotics and Automation Letters.

100

Discovering Temporal Structure: An Overview of Hierarchical RL

Menache, I., Mannor, S., and Shimkin, N. (2002). Q-cut—dynamic discovery of sub-goals in
reinforcement learning. In European Conference on Machine Learning.

Metzen, J. H. (2012). Online Skill Discovery using Graph-based Clustering. In European
Workshop on Reinforcement Learning.

Meyerson, A. and Tagiku, B. (2009). Minimizing average shortest path distances via shortcut
edge addition. In Approximation, Randomization, and Combinatorial Optimization.
Algorithms and Techniques, pages 272–285. Springer.

Mishra, U. A., Xue, S., Chen, Y., and Xu, D. (2023). Generative skill chaining: Long-horizon
skill planning with diffusion models. In Conference on Robot Learning.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., Graves,
A., Riedmiller, M. A., Fidjeland, A. K., Ostrovski, G., Petersen, S., Beattie, C., Sadik, A.,
Antonoglou, I., King, H., Kumaran, D., Wierstra, D., Legg, S., and Hassabis, D. (2015).
Human-level control through deep reinforcement learning. Nature, 518:529–533.

Mohamed, S. and Rezende, D. J. (2015). Variational Information Maximisation for Intrinsi-
cally Motivated Reinforcement Learning. In Neural Information Processing Systems.

Momennejad, I., Russek, E., Cheong, J. H., Botvinick, M., Daw, N., and Gershman, S.
(2017). The successor representation in human reinforcement learning. Nature Human
Behaviour, 1:680––692.

Moraes, R. O., Aleixo, D. S., Ferreira, L. N., and Lelis, L. H. (2023). Choosing well your
opponents: How to guide the synthesis of programmatic strategies. International Joint
Conference on Artificial Intelligence.

Moraes, R. O. and Lelis, L. H. S. (2024). Searching for programmatic policies in semantic
spaces. In International Joint Conference on Artificial Intelligence.

Moraes, R. O., Sadmine, Q. A., Baier, H., and Lelis, L. H. (2025). InnateCoder: Learning
Programmatic Options with Foundation Models. arXiv.

Müller, M. (2007). Dynamic Time Warping, pages 69–84. Springer Berlin Heidelberg.

Nachum, O., Gu, S. S., Lee, H., and Levine, S. (2018). Data-efficient hierarchical reinforce-
ment learning. Neural Information Processing Systems.

Nair, S. and Finn, C. (2020). Hierarchical Foresight: Self-Supervised Learning of Long-
Horizon Tasks via Visual Subgoal Generation. In International Conference on Learning
Representations.

Nam, T., Sun, S., Pertsch, K., Hwang, S. J., and Lim, J. J. (2022). Skill-based Meta-
Reinforcement Learning. In International Conference on Learning Representations.

Narayanamurthy, S. M. and Ravindran, B. (2008). On the hardness of finding symmetries
in Markov decision processes. In International Conference on Machine Learning.

101

Nayyar, R. K. and Srivastava, S. (2024). Autonomous Option Invention for Continual
Hierarchical Reinforcement Learning and Planning. The Association for the Advancement
of Artificial Intelligence.

Newman, M. E. J. and Girvan, M. (2004). Finding and evaluating community structure in
networks. American Physical Society, 69:026113.

Ni, T., Eysenbach, B., Seyedsalehi, E., Ma, M., Gehring, C., Mahajan, A., and Bacon, P.-L.
(2024). Bridging State and History Representations: Understanding Self-Predictive RL.
International Conference on Learning Representations.

Ni, T., Ma, M., Eysenbach, B., and Bacon, P.-L. (2023). When Do Transformers Shine
in RL? Decoupling Memory from Credit Assignment. In Neural Information Processing
Systems.

OEL Team, O. E. L. T., Stooke, A., Mahajan, A., Barros, C., Deck, C., Bauer, J., Sygnowski,
J., Trebacz, M., Jaderberg, M., Mathieu, M., McAleese, N., Bradley-Schmieg, N., Wong,
N., Porcel, N., Raileanu, R., Hughes-Fitt, S., Dalibard, V., and Czarnecki, W. M. (2021).
Open-Ended Learning Leads to Generally Capable Agents. arXiv.

Oh, J., Hessel, M., Czarnecki, W. M., Xu, Z., van Hasselt, H. P., Singh, S., and Silver, D.
(2020). Discovering reinforcement learning algorithms. Neural Information Processing
Systems.

OpenAI (2024). O1 System Card. https://cdn.openai.com/o1-system-card-20240917.pdf.

OpenAI (2025). Computer-Using Agent. https://openai.com/index/introducing-operator/.

Oudeyer, P. and Kaplan, F. (2007). What is intrinsic motivation? A typology of computa-
tional approaches. Frontiers Neurorobotics, 1:6.

Palo, N. D., Byravan, A., Hasenclever, L., Wulfmeier, M., Heess, N. M. O., and Ried-
miller, M. A. (2023). Towards A Unified Agent with Foundation Models. Reincarnating
Reinforcement Learning Workshop, International Conference on Learning Representations.

Palo, N. D. and Johns, E. (2024). Keypoint Action Tokens Enable In-Context Imitation
Learning in Robotics. Robotics: Science and Systems Proceedings.

Pan, J., Zhang, Y., Tomlin, N., Zhou, Y., Levine, S., and Suhr, A. (2024). Autonomous
Evaluation and Refinement of Digital Agents. In Conference on Language Modeling.

Park, S., Choi, J., Kim, J., Lee, H., and Kim, G. (2022). Lipschitz-constrained Unsupervised
Skill Discovery. In International Conference on Learning Representations.

Park, S., Frans, K., Eysenbach, B., and Levine, S. (2025a). OGBench: Benchmarking Offline
Goal-Conditioned RL. International Conference on Learning Representations.

Park, S., Frans, K., Mann, D., Eysenbach, B., Kumar, A., and Levine, S. (2025b). Horizon
reduction makes rl scalable. arXiv.

102

Discovering Temporal Structure: An Overview of Hierarchical RL

Park, S., Ghosh, D., Eysenbach, B., and Levine, S. (2024a). Hiql: Offline goal-conditioned rl
with latent states as actions. Neural Information Processing Systems.

Park, S., Kreiman, T., and Levine, S. (2024b). Foundation policies with Hilbert representa-
tions. In International Conference on Machine Learning.

Park, S., Lee, K., Lee, Y., and Abbeel, P. (2023). Controllability-aware unsupervised skill
discovery. In International Conference on Machine Learning.

Park, S., Rybkin, O., and Levine, S. (2024c). METRA: Scalable Unsupervised RL with
Metric-Aware Abstraction. In International Conference on Learning Representations.

Parker-Holder, J., Jiang, M., Dennis, M., Samvelyan, M., Foerster, J. N., Grefenstette, E.,
and Rocktaschel, T. (2022). Evolving Curricula with Regret-Based Environment Design.
arXiv.

Parr, R. and Russell, S. (1997). Reinforcement learning with hierarchies of machines. Neural
Information Processing Systems.

Pateria, S., Subagdja, B., Tan, A.-H., and Quek, C. (2021). Hierarchical Reinforcement
Learning: A Comprehensive Survey. ACM Computing Surveys, 54:1–35.

Paul, S., Vanbaar, J., and Roy-Chowdhury, A. (2019). Learning from trajectories via subgoal
discovery. Advances in Neural Information Processing Systems, 32.

Pertsch, K., Lee, Y., and Lim, J. (2021). Accelerating reinforcement learning with learned
skill priors. In Conference on Robot Learning.

Pfau, D., Petersen, S., Agarwal, A., Barrett, D. G. T., and Stachenfeld, K. L. (2018).
Spectral Inference Networks: Unifying Deep and Spectral Learning. In International
Conference on Learning Representations.

Pignatelli, E., Ferret, J., Rockaschel, T., Grefenstette, E., Paglieri, D., Coward, S., and Toni,
L. (2024). Assessing the Zero-Shot Capabilities of LLMs for Action Evaluation in RL.
Neural Information Processing Systems.

Piray, P. and Daw, N. D. (2021). Linear reinforcement learning in planning, grid fields, and
cognitive control. Nature Communications, 12(1):4942.

Pitis, S., Chan, H., Zhao, S., Stadie, B. C., and Ba, J. (2020). Maximum Entropy Gain
Exploration for Long Horizon Multi-goal Reinforcement Learning. In International
Conference on Machine Learning.

Plappert, M., Andrychowicz, M., Ray, A., McGrew, B., Baker, B., Powell, G., Schneider, J.,
Tobin, J., Chociej, M., Welinder, P., Kumar, V., and Zaremba, W. (2018). Multi-Goal
Reinforcement Learning: Challenging Robotics Environments and Request for Research.
arXiv.

Pong, V., Dalal, M., Lin, S., Nair, A., Bahl, S., and Levine, S. (2020). Skew-Fit: State-
Covering Self-Supervised Reinforcement Learning. In International Conference on Machine
Learning.

103

Portelas, R., Colas, C., Weng, L., Hofmann, K., and Oudeyer, P.-Y. (2020). Automatic
Curriculum Learning For Deep RL: A Short Survey. In International Joint Conference on
Artificial Intelligence.

Precup, D. (2001). Temporal abstraction in reinforcement learning. PhD thesis, University
of Massachusetts at Amherst.

Precup, D. and Sutton, R. S. (2000). Temporal abstraction in reinforcement learning. In
International Conference on Machine Learning.

Precup, D., Sutton, R. S., and Singh, S. P. (2000). Eligibility Traces for Off-Policy Policy
Evaluation. In International Conference on Machine Learning.

PrismarineJS (2013). PrismarineJS/mineflayer: Create Minecraft bots with a powerful,
stable, and high level JavaScript API. https://github.com/PrismarineJS/mineflayer.

Puig, X., Undersander, E., Szot, A., Cote, M. D., Yang, T.-Y., Partsey, R., Desai, R.,
Clegg, A., Hlavac, M., Min, S. Y., Vondruš, V., Gervet, T., Berges, V.-P., Turner, J. M.,
Maksymets, O., Kira, Z., Kalakrishnan, M., Malik, J., Chaplot, D. S., Jain, U., Batra, D.,
Rai, A., and Mottaghi, R. (2024). Habitat 3.0: A Co-Habitat for Humans, Avatars, and
Robots. In International Conference on Learning Representations.

Puterman, M. L. (1994). Markov Decision Processes: Discrete Stochastic Dynamic Program-
ming. Wiley Series in Probability and Statistics.

Qiu, W. and Zhu, H. (2022). Programmatic reinforcement learning without oracles. In
International Conference on Learning Representations.

Racanière, S., Lampinen, A. K., Santoro, A., Reichert, D. P., Firoiu, V., and Lillicrap, T. P.
(2019). Automated curricula through setter-solver interactions. International Conference
on Learning Representations.

Radford, A., Kim, J. W., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S., Sastry, G., Askell,
A., Mishkin, P., Clark, J., Krueger, G., and Sutskever, I. (2021). Learning Transferable
Visual Models From Natural Language Supervision. In International Conference on
Machine Learning.

Ramesh, R., Tomar, M., and Ravindran, B. (2019). Successor Options: An Option Discovery
Framework for Reinforcement Learning. In International Joint Conference on Artificial
Intelligence.

Raparthy, S. C., Hambro, E., Kirk, R., Henaff, M., and Raileanu, R. (2023). Generalization
to new sequential decision making tasks with in-context learning. arXiv.

Ravindran, B. (2003). SMDP homomorphisms: An algebraic approach to abstraction in
semi markov decision processes. International Joint Conference on Artificial Intelligence.

Ravindran, B. (2004). An algebraic approach to abstraction in reinforcement learning.
University of Massachusetts Amherst.

104

Discovering Temporal Structure: An Overview of Hierarchical RL

Ravindran, B. and Barto, A. G. (2001). Symmetries and model minimization in markov
decision processes. PhD thesis, University of Massachusetts.

Ravindran, B. and Barto, A. G. (2002). Model minimization in hierarchical reinforcement
learning. In Abstraction, Reformulation, and Approximation: 5th International Symposium.

Ravindran, B. and Barto, A. G. (2003). Relativized options: Choosing the right transforma-
tion. In International Conference on Machine Learning.

Ravindran, B. and Barto, A. G. (2004). Approximate homomorphisms: A framework for
non-exact minimization in Markov decision processes.

Rawles, C., Li, A., Rodriguez, D., Riva, O., and Lillicrap, T. P. (2023). AndroidInTheWild:
A Large-Scale Dataset For Android Device Control. In Neural Information Processing
Systems.

Rezaei-Shoshtari, S., Zhao, R., Panangaden, P., Meger, D., and Precup, D. (2022). Con-
tinuous mdp homomorphisms and homomorphic policy gradient. Neural Information
Processing Systems.

Riemer, M., Cases, I., Rosenbaum, C., Liu, M., and Tesauro, G. (2019). On the Role of
Weight Sharing During Deep Option Learning. In The Association for the Advancement
of Artificial Intelligence.

Riemer, M., Liu, M., and Tesauro, G. (2018). Learning Abstract Options. Neural Information
Processing Systems.

Ring, M. B. (1995). Continual learning in reinforcement environments. PhD thesis, University
of Texas.

Rissanen, J. (1978). Modeling by shortest data description. Automatica, 14(5):465–471.

Rocamonde, J., Montesinos, V., Nava, E., Perez, E., and Lindner, D. (2024). Vision-
Language Models are Zero-Shot Reward Models for Reinforcement Learning. International
Conference on Learning Representations.

Rodriguez-Sanchez, R. and Konidaris, G. (2024). Learning Abstract World Models for
Value-preserving Planning with Options. Reinforcement Learning Journal, 4:1733–1758.

Rovee-Collier, C. K. and Gekoski, M. J. (1979). The economics of infancy: A review of
conjugate reinforcement. Advances in child development and behavior, 13:195–255.

Salge, C., Glackin, C., and Polani, D. (2014). Empowerment–an introduction. Guided
Self-Organization: Inception, pages 67–114.

Salter, S., Wulfmeier, M., Tirumala, D., Heess, N., Riedmiller, M., Hadsell, R., and Rao, D.
(2022). Mo2: Model-based offline options. In Conference on Lifelong Learning Agents.

Samvelyan, M., Khan, A., Dennis, M., Jiang, M., Parker-Holder, J., Foerster, J. N., Raileanu,
R., and Rocktaschel, T. (2023). MAESTRO: Open-Ended Environment Design for Multi-
Agent Reinforcement Learning. International Conference on Learning Representations.

105

Schaul, T., Borsa, D., Ding, D., Szepesvari, D., Ostrovski, G., Dabney, W., and Osindero, S.
(2019). Adapting Behaviour for Learning Progress. arXiv.

Schaul, T., Horgan, D., Gregor, K., and Silver, D. (2015). Universal value function approxi-
mators. In International conference on machine learning, pages 1312–1320.

Schmidhuber, J. (1987). Evolutionary principles in self-referential learning. on learning now
to learn: The meta-meta-meta...-hook. Master’s thesis, Technische Universitat Munchen.

Schmidhuber, J. (2004). Optimal ordered problem solver. Machine Learning, 54:211–254.

Schmidhuber, J. (2010). Formal Theory of Creativity, Fun, and Intrinsic Motivation (1990-
2010). IEEE Transactions on Autonomous Mental Development, 2(3):230–247.

Schmidhuber, J. (2011). PowerPlay: Training an Increasingly General Problem Solver by
Continually Searching for the Simplest Still Unsolvable Problem. Frontiers in Psychology,
4.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and Klimov, O. (2017). Proximal Policy
Optimization Algorithms. arXiv.

Sharma, A., Ahn, M., Levine, S., Kumar, V., Hausman, K., and Gu, S. (2020a). Emergent
Real-World Robotic Skills via Unsupervised Off-Policy Reinforcement Learning. In
Robotics: Science and Systems.

Sharma, A., Gu, S., Levine, S., Kumar, V., and Hausman, K. (2020b). Dynamics-Aware
Unsupervised Discovery of Skills. In International Conference on Learning Representations.

Sharma, A., Sharma, M., Rhinehart, N., and Kitani, K. M. (2018). Directed-info gail:
Learning hierarchical policies from unsegmented demonstrations using directed information.
International Conference on Learning Representations.

Sheth, A. and Roy, K. (2023). Neurosymbolic Value-Inspired AI (Why, What, and How).
IEEE Intelligent Systems.

Shi, J. and Malik, J. (2000). Normalized Cuts and Image Segmentation. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 22(8):888–905.

Shu, T., Xiong, C., and Socher, R. (2018). Hierarchical and Interpretable Skill Acquisition in
Multi-task Reinforcement Learning. International Conference on Learning Representations.

Silver, D. and Ciosek, K. (2012). Compositional Planning Using Optimal Option Models. In
International Conference on Machine Learning.

Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A., Guez, A., Hubert,
T., baker, L., Lai, M., Bolton, A., Chen, Y., Lillicrap, T. P., Hui, F., Sifre, L., van den
Driessche, G., Graepel, T., and Hassabis, D. (2017). Mastering the game of Go without
human knowledge. Nature, 550:354–359.

Silver, D., Singh, S., Precup, D., and Sutton, R. S. (2021). Reward is enough. Artif. Intell.,
299:103535.

106

Discovering Temporal Structure: An Overview of Hierarchical RL

Silver, T., Dan, S., Srinivas, K., Tenenbaum, J. B., Kaelbling, L., and Katz, M. (2024).
Generalized planning in pddl domains with pretrained large language models. In The
Association for the Advancement of Artificial Intelligence.

Simsek, Ö. and Barto, A. G. (2004). Using relative novelty to identify useful temporal
abstractions in reinforcement learning. International Conference on Machine Learning.

Şimşek, Ö. and Barto, A. G. (2008). Skill Characterization Based on Betweenness. In Koller,
D., Schuurmans, D., Bengio, Y., and Bottou, L., editors, Advances in Neural Information
Processing Systems 21, Proceedings of the Twenty-Second Annual Conference on Neural
Information Processing Systems, Vancouver, British Columbia, Canada, December 8-11,
2008, pages 1497–1504. Curran Associates, Inc.

Şimşek, Ö., Wolfe, A. P., and Barto, A. G. (2005). Identifying useful subgoals in reinforcement
learning by local graph partitioning. In International Conference on Machine Learning.

Singh, S., Barto, A. G., and Chentanez, N. (2004). Intrinsically Motivated Reinforcement
Learning. In Advances in Neural Information Processing Systems 17 [Neural Information
Processing Systems, NIPS 2004, December 13-18, 2004, Vancouver, British Columbia,
Canada], pages 1281–1288.

Smith, M., van Hoof, H., and Pineau, J. (2018). An Inference-Based Policy Gradient Method
for Learning Options. In International Conference on Machine Learning.

Sohn, S., Oh, J., and Lee, H. (2018). Hierarchical reinforcement learning for zero-shot
generalization with subtask dependencies. Neural Information Processing Systems.

Solway, A., Diuk, C., Córdova, N., Yee, D., Barto, A. G., Niv, Y., and Botvinick, M. M.
(2014). Optimal behavioral hierarchy. PLOS Computational Biology, 10(8):1–10.

Sontakke, S. A., Zhang, J., Arnold, S. M. R., Pertsch, K., Biyik, E., Sadigh, D., Finn, C.,
and Itti, L. (2023). RoboCLIP: One Demonstration is Enough to Learn Robot Policies.
Neural Information Processing Systems.

Sprekeler, H. (2011). On the relation of slow feature analysis and Laplacian eigenmaps.
Neural Computation, 23(12):3287–3302.

Srinivas, A., Krishnamurthy, R., Kumar, P., and Ravindran, B. (2016). Option discovery in
hierarchical reinforcement learning using spatio-temporal clustering. arXiv.

Stachenfeld, K. L., Botvinick, M. M., and Gershman, S. J. (2017). The hippocampus as a
predictive map. Nature neuroscience, 20(11):1643–1653.

Stolle, M. and Precup, D. (2002). Learning Options in Reinforcement Learning. In Symposium
on Abstraction, Reformulation and Approximation.

Stout, A. and Barto, A. G. (2010). Competence progress intrinsic motivation. In International
Conference on Development and Learning.

Strehl, A. L. and Littman, M. L. (2008). An analysis of model-based Interval Estimation for
Markov Decision Processes. J. Comput. Syst. Sci., 74(8):1309–1331.

107

Strouse, D., Baumli, K., Warde-Farley, D., Mnih, V., and Hansen, S. (2022). Learning
more skills through optimistic exploration. In International Conference on Learning
Representations (ICLR).

Sukhbaatar, S., Lin, Z., Kostrikov, I., Synnaeve, G., Szlam, A., and Fergus, R. (2018).
Intrinsic Motivation and Automatic Curricula via Asymmetric Self-Play. In International
Conference on Learning Representations.

Sun, S.-H., Wu, T.-L., and Lim, J. J. (2020). Program guided agent. In International
Conference on Learning Representations.

Sutton, R. S. (1988). Learning to Predict by the Methods of Temporal Differences. Machine
Learning, 3:9–44.

Sutton, R. S. (2019). The Bitter Lesson. http://www.incompleteideas.net/IncIdeas/

BitterLesson.html.

Sutton, R. S. and Barto, A. G. (2018). Reinforcement Learning: An Introduction. The MIT
Press, second edition.

Sutton, R. S., Machado, M. C., Holland, G. Z., Szepesvari, D., Timbers, F., Tanner, B., and
White, A. (2023). Reward-respecting subtasks for model-based reinforcement learning.
Artificial Intelligence, 324:104001.

Sutton, R. S., McAllester, D. A., Singh, S. P., and Mansour, Y. (1999a). Policy Gradient
Methods for Reinforcement Learning with Function Approximation. In Neural Information
Processing Systems.

Sutton, R. S., Modayil, J., Delp, M., Degris, T., Pilarski, P. M., White, A., and Precup,
D. (2011). Horde: A scalable real-time architecture for learning knowledge from unsuper-
vised sensorimotor interaction. In International Conference on Autonomous Agents and
Multiagent Systems.

Sutton, R. S., Precup, D., and Singh, S. (1998). Intra-Option Learning about Temporally
Abstract Actions. In International Conference on Machine Learning.

Sutton, R. S., Precup, D., and Singh, S. (1999b). Between MDPs and Semi-MDPs: A
Framework for Temporal Abstraction in Reinforcement Learning. Artificial Intelligence,
112:181–211.

Sutton, R. S., Singh, S., and McAllester, D. A. (2001). Comparing Policy-Gradient Algo-
rithms. http://incompleteideas.net/papers/SSM-unpublished.pdf.

Szot, A., Clegg, A., Undersander, E., Wijmans, E., Zhao, Y., Turner, J., Maestre, N.,
Mukadam, M., Chaplot, D. S., Maksymets, O., Gokaslan, A., Vondruš, V., Dharur, S.,
Meier, F., Galuba, W., Chang, A. X., Kira, Z., Koltun, V., Malik, J., Savva, M., and
Batra, D. (2021). Habitat 2.0: Training Home Assistants to Rearrange their Habitat.
Neural Information Processing Systems.

108

http://www.incompleteideas.net/IncIdeas/BitterLesson.html
http://www.incompleteideas.net/IncIdeas/BitterLesson.html

Discovering Temporal Structure: An Overview of Hierarchical RL

Talvitie, E. (2017). Self-correcting models for model-based reinforcement learning. In The
Association for the Advancement of Artificial Intelligence.

Taylor, M. E. and Stone, P. (2009). Transfer learning for reinforcement learning domains: A
survey. Journal of Machine Learning Research, 10(7).

Team, S., Raad, M. A., Ahuja, A., and et al, C. B. (2024). Scaling Instructable Agents
Across Many Simulated Worlds. arXiv.

Tedrake, R., Manchester, I. R., Tobenkin, M. M., and Roberts, J. W. (2010). LQR-trees:
Feedback Motion Planning via Sums-of-Squares Verification. The International Journal
of Robotics Research, 29(8):1038–1052.

Telikani, A., Tahmassebi, A., Banzhaf, W., and Gandomi, A. H. (2021). Evolutionary
Machine Learning: A Survey. Association for Computing Machinery.

Thakoor, S., Rowland, M., Borsa, D., Dabney, W., Munos, R., and Barreto, A. (2022).
Generalised Policy Improvement with Geometric Policy Composition. In International
Conference on Machine Learning.

Thomaz, A. L., Breazeal, C., et al. (2006). Reinforcement learning with human teachers:
Evidence of feedback and guidance with implications for learning performance. In The
Association for the Advancement of Artificial Intelligence.

Thrun, S. and Pratt, L. Y. (1998). Learning to Learn: Introduction and Overview. In
Learning to Learn.

Tirinzoni, A., Touati, A., Farebrother, J., Guzek, M., Kanervisto, A., Xu, Y., Lazaric,
A., and Pirotta, M. (2025). Zero-Shot Whole-Body Humanoid Control via Behavioral
Foundation Models. In International Conference on Learning Representations.

Todorov, E. (2006). Linearly-solvable Markov decision problems. In Neural Information
Processing Systems.

Todorov, E. (2009a). Compositionality of optimal control laws. In Neural Information
Processing Systems.

Todorov, E. (2009b). Efficient computation of optimal actions. Proceedings of the National
Academy of Sciences, 106(28):11478–11483.

Todorov, E., Erez, T., and Tassa, Y. (2012). MuJoCo: A physics engine for model-based
control. In International Conference on Intelligent Robots and Systems.

Touati, A. and Ollivier, Y. (2021). Learning One Representation to Optimize All Rewards.
In Neural Information Processing Systems.

Touati, A., Rapin, J., and Ollivier, Y. (2023). Does Zero-Shot Reinforcement Learning
Exist? In International Conference on Learning Representations.

Trivedi, D., Zhang, J., Sun, S.-H., and Lim, J. J. (2021). Learning to synthesize programs
as interpretable and generalizable policies. Neural Information Processing Systems.

109

Tse, H. T., Chandrasekar, S., and Machado, M. C. (2025). Reward-Aware Proto-
Representations in Reinforcement Learning. arXiv.

Uesato, J., Kushman, N., Kumar, R., Song, H. F., Siegel, N. Y., Wang, L., Creswell, A.,
Irving, G., and Higgins, I. (2023). Solving Math Word Problems with Process-based and
Outcome-based Feedback. arXiv.

Van Hasselt, H. and Wiering, M. A. (2009). Using continuous action spaces to solve discrete
problems. In International Joint Conference on Neural Networks.

Varga, R. S. (2000). Matrix Iterative Analysis. Springer.

Vaswani, A., Shazeer, N. M., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L.,
and Polosukhin, I. (2017). Attention is All you Need. In Neural Information Processing
Systems.

Vats, S., Likhachev, M., and Kroemer, O. (2023). Efficient Recovery Learning using Model
Predictive Meta-Reasoning. In International Conference on Robotics and Automation.

Veeriah, V., Oh, J., and Singh, S. (2018). Many-goals reinforcement learning. ArXiv.

Veeriah, V., Zahavy, T., Hessel, M., Xu, Z., Oh, J., Kemaev, I., van Hasselt, H., Silver,
D., and Singh, S. (2021). Discovery of Options via Meta-Learned Subgoals. In Neural
Information Processing Systems.

Venuto, D., Islam, S. N., Klissarov, M., Precup, D., Yang, S., and Anand, A. (2024). Code
as Reward: Empowering Reinforcement Learning with VLMs. International Conference
on Machine Learning.

Verma, A., Le, H., Yue, Y., and Chaudhuri, S. (2019). Imitation-projected programmatic
reinforcement learning. Neural Information Processing Systems.

Verma, A., Murali, V., Singh, R., Kohli, P., and Chaudhuri, S. (2018). Programmatically
interpretable reinforcement learning. In International Conference on Machine Learning.

Vezhnevets, A. S., Osindero, S., Schaul, T., Heess, N., Jaderberg, M., Silver, D., and
Kavukcuoglu, K. (2017). Feudal networks for hierarchical reinforcement learning. In
International Conference on Machine Learning.

Victor, B. (2011). Up and Down the Ladder of Abstraction.
https://worrydream.com/LadderOfAbstraction/.

Vigorito, C. M. and Barto, A. G. (2008). Autonomous Hierarchical Skill Acquisition in
Factored MDPs. In Yale Workshop on Adaptive and Learning Systems.

Vinyals, O., Babuschkin, I., Czarnecki, W. M., Mathieu, M., Dudzik, A., Chung, J., Choi,
D., Powell, R., Ewalds, T., Georgiev, P., Oh, J., Horgan, D., Kroiss, M., Danihelka, I.,
Huang, A., Sifre, L., Cai, T., Agapiou, J. P., Jaderberg, M., Vezhnevets, A. S., Leblond,
R., Pohlen, T., Dalibard, V., Budden, D., Sulsky, Y., Molloy, J., Paine, T. L., Gulcehre,
C., Wang, Z., Pfaff, T., Wu, Y., Ring, R., Yogatama, D., Wünsch, D., McKinney, K.,

110

Discovering Temporal Structure: An Overview of Hierarchical RL

Smith, O., Schaul, T., Lillicrap, T. P., Kavukcuoglu, K., Hassabis, D., Apps, C., and
Silver, D. (2019). Grandmaster level in StarCraft II using multi-agent reinforcement
learning. Nature, 575:350–354.

Vlastelica, M., Kolev, P., Cheng, J., and Martius, G. (2023). Diverse offline imitation via
fenchel duality. European Workshop on Reinforcement Learning.

Wan, Y. and Sutton, R. S. (2022). Toward Discovering Options that Achieve Faster Planning.
arXiv.

Wan, Y., Zaheer, M., White, A., White, M., and Sutton, R. S. (2019). Planning with
Expectation Models. In International Joint Conference on Artificial Intelligence.

Wang, G., Xie, Y., Jiang, Y., Mandlekar, A., Xiao, C., Zhu, Y., Fan, L. J., and Anandkumar,
A. (2023a). Voyager: An Open-Ended Embodied Agent with Large Language Models.
arXiv.

Wang, J. X., Kurth-Nelson, Z., Tirumala, D., Soyer, H., Leibo, J. Z., Munos, R., Blundell,
C., Kumaran, D., and Botvinick, M. (2016). Learning to reinforcement learn. arXiv.

Wang, K., Zhou, K., Feng, J., Hooi, B., and Wang, X. (2022). Reachability-Aware Laplacian
Representation in Reinforcement Learning. International Conference on Machine Learning.

Wang, K., Zhou, K., Zhang, Q., Shao, J., Hooi, B., and Feng, J. (2021). Towards Better
Laplacian Representation in Reinforcement Learning with Generalized Graph Drawing.
In International Conference on Machine Learning.

Wang, T., Torralba, A., Isola, P., and Zhang, A. (2023b). Optimal Goal-Reaching Re-
inforcement Learning via Quasimetric Learning. International Conference on Machine
Learning.

Wang, Y., Sun, Z., Zhang, J., Xian, Z., Biyik, E., Held, D., and Erickson, Z. (2024a).
RL-VLM-F: Reinforcement Learning from Vision Language Foundation Model Feedback.
In International Conference on Machine Learning.

Wang, Y., Xian, Z., Chen, F., Wang, T.-H., Wang, Y., Fragkiadaki, K., Erickson, Z., Held,
D., and Gan, C. (2024b). RoboGen: towards unleashing infinite data for automated robot
learning via generative simulation. In International Conference on Machine Learning.

Wang, Z. Z., Mao, J., Fried, D., and Neubig, G. (2024c). Agent Workflow Memory. arXiv.

Warde-Farley, D., de Wiele, T. V., Kulkarni, T. D., Ionescu, C., Hansen, S., and Mnih,
V. (2019). Unsupervised Control Through Non-Parametric Discriminative Rewards. In
International Conference on Learning Representations.

Watkins, C. and Dayan, P. (1992). Q-learning. Machine Learning, 8:279–292.

Wei, J., Wang, X., Schuurmans, D., Bosma, M., hsin Chi, E. H., Xia, F., Le, Q., and Zhou,
D. (2022). Chain of Thought Prompting Elicits Reasoning in Large Language Models.
Neural Information Processing Systems.

111

Wilkes, M. V., Wheeler, D. J., Gill, S., and Corbató, F. (1958). The preparation of programs
for an electronic digital computer. American Institute of Physics.

Wirth, C., Akrour, R., Neumann, G., and Fürnkranz, J. (2017). A Survey of Preference-Based
Reinforcement Learning Methods. Journal of Machine Learning Research, 18(136):1–46.

Wiskott, L. and Sejnowski, T. J. (2002). Slow feature analysis: Unsupervised learning of
invariances. Neural Computation, 14(4):715–770.

Wolpert, D. H. and Macready, W. G. (1997). No free lunch theorems for optimization. IEEE
Transactions on Evolutionary Computation, 1(1):67–82.

Wu, Y., Tucker, G., and Nachum, O. (2019). The Laplacian in RL: Learning Representations
with Efficient Approximations. In International Conference on Learning Representations.

Wulfmeier, M., Rao, D., Hafner, R., Lampe, T., Abdolmaleki, A., Hertweck, T., Neunert,
M., Tirumala, D., Siegel, N. Y., Heess, N., and Riedmiller, M. A. (2020). Data-efficient
Hindsight Off-policy Option Learning. International Conference on Machine Learning.

Xiao, T., Chan, H., Sermanet, P., Wahid, A., Brohan, A., Hausman, K., Levine, S., and
Tompson, J. (2022). Robotic Skill Acquisition via Instruction Augmentation with Vision-
Language Models. Robotics: Science and Systems Proceedings.

Xie, T., Zhao, S., Wu, C. H., Liu, Y., Luo, Q., Zhong, V., Yang, Y., and Yu, T. (2024).
Text2Reward: Automated Dense Reward Function Generation for Reinforcement Learning.
International Conference on Learning Representations.

Xie, Z., Ji, C., and Zhang, Y. (2022). Deep Skill Chaining with Diversity for Multi-agent
Systems. In International Conference on Artificial Intelligence.

Xu, Z., van Hasselt, H. P., and Silver, D. (2018). Meta-gradient reinforcement learning.
Neural Information Processing Systems.

Yang, R., Chen, J., Zhang, Y., Yuan, S., Chen, A., Richardson, K., Xiao, Y., and Yang, D.
(2024). SelfGoal: Your Language Agents Already Know How to Achieve High-level Goals.
Association for Computational Linguistics.

Yang, R., Fang, M., Han, L., Du, Y., Luo, F., and Li, X. (2021a). MHER: Model-based
hindsight experience replay. Deep Reinforcement Learning Workshop, Neural Information
Processing Systems.

Yang, Y., Inala, J. P., Bastani, O., Pu, Y., Solar-Lezama, A., and Rinard, M. (2021b).
Program synthesis guided reinforcement learning for partially observed environments.
Neural Information Processing Systems.

Yu, W., Gileadi, N., Fu, C., Kirmani, S., Lee, K.-H., Arenas, M. G., Chiang, H.-T. L., Erez,
T., Hasenclever, L., Humplik, J., Ichter, B., Xiao, T., Xu, P., Zeng, A., Zhang, T., Heess,
N. M. O., Sadigh, D., Tan, J., Tassa, Y., and Xia, F. (2023). Language to Rewards for
Robotic Skill Synthesis. Conference on Robot Learning.

112

Discovering Temporal Structure: An Overview of Hierarchical RL

Zahavy, T., Haroush, M., Merlis, N., Mankowitz, D. J., and Mannor, S. (2018). Learn what
not to learn: Action elimination with deep reinforcement learning. Neural Information
Processing Systems.

Zahavy, T., O’Donoghue, B., Barreto, A., Flennerhag, S., Mnih, V., and Singh, S. (2021).
Discovering Diverse Nearly Optimal Policies with Successor Features. In Unsupervised
Reinforcement Learning Workshop, International Conference on Machine Learning.

Zahavy, T., Schroecker, Y., Behbahani, F. M. P., Baumli, K., Flennerhag, S., Hou, S., and
Singh, S. (2022). Discovering Policies with DOMiNO: Diversity Optimization Maintaining
Near Optimality. International Conference on Learning Representations.

Zala, A., Cho, J., Lin, H., Yoon, J., and Bansal, M. (2024). EnvGen: Generating and
Adapting Environments via LLMs for Training Embodied Agents. In Conference on
Language Modeling.

Zhang, A., McAllister, R., Calandra, R., Gal, Y., and Levine, S. (2021a). Learning invariant
representations for reinforcement learning without reconstruction. International Conference
on Learning Representations.

Zhang, J., Lehman, J., Stanley, K. O., and Clune, J. (2024). OMNI: Open-endedness
via Models of human Notions of Interestingness. International Conference on Learning
Representations.

Zhang, J., Pertsch, K., Yang, J., and Lim, J. J. (2021b). Minimum description length skills
for accelerated reinforcement learning. 2021.

Zhang, M., Tang, H., Hao, J., and Zheng, Y. (2023). Towards A Unified Policy Abstraction
Theory and Representation Learning Approach in Markov Decision Processes. International
Conference on Learning Representations.

Zhang, S. and Whiteson, S. (2019). DAC: The Double Actor-Critic Architecture for Learning
Options. In Neural Information Processing Systems.

Zhang, Y., Abbeel, P., and Pinto, L. (2020). Automatic Curriculum Learning through Value
Disagreement. Neural Information Processing Systems.

Zhao, Z., Samel, K., Chen, B., et al. (2021). Proto: Program-guided transformer for
program-guided tasks. Neural Information Processing Systems.

Zheng, Q., Henaff, M., Zhang, A., Grover, A., and Amos, B. (2024). Online Intrinsic Rewards
for Decision Making Agents from Large Language Model Feedback. arXiv.

Zhou, S., Xu, F. F., Zhu, H., Zhou, X., Lo, R., Sridhar, A., Cheng, X., Bisk, Y., Fried, D.,
Alon, U., et al. (2024). WebArena: A Realistic Web Environment for Building Autonomous
Agents. International Conference on Learning Representations.

Ziebart, B. D., Maas, A. L., Bagnell, J. A., and Dey, A. K. (2008). Maximum Entropy
Inverse Reinforcement Learning. In The Association for the Advancement of Artificial
Intelligence.

113

	Introduction
	What is Hierarchical Reinforcement Learning for?
	The Benefits of Hierarchical Reinforcement Learning
	Trade-offs

	Formalizing Hierarchical Reinforcement Learning
	Reinforcement Learning
	Hierarchical Reinforcement Learning
	Options: A Mathematical Formalism
	Related Terminologies and Formalisms
	Beyond Architectural Choices

	Discovery from Online Experience
	Bottleneck Discovery
	Benefits and Opportunities

	Spectral Methods
	Benefits and Opportunities

	Sequentially Composable Options
	Benefits and Opportunities

	Empowerment Maximization
	Benefits and Opportunities

	Via Environment Rewards
	Benefits and Opportunities

	Directly Optimizing for the Benefits of Hierarchical Reinforcement Learning
	Benefits and Opportunities

	Meta Learning
	Benefits and Opportunities

	Curriculum Learning
	Benefits and Opportunities

	Intrinsic Motivation
	Benefits and Opportunities

	Discovery through Offline Datasets
	Variational Inference of Skill Latents
	Benefits and Opportunities

	Hindsight Subgoal Relabeling
	Benefits and Opportunities

	Discovery with Foundation Models
	Embedding Similarity
	Benefits and Opportunities

	Providing Feedback
	Benefits and Opportunities

	Reward as Code
	Benefits and Opportunities

	Directly Modeling the Policy
	Benefits and Opportunities

	Using Temporally Abstract Behaviour
	Different Ways of Deliberating over Options
	Learning High-level Policies
	Model-free approaches
	Model-based approaches
	Large Language Models

	Challenges of Discovery
	Non-stationarity
	Learning About Multiple Behaviours
	Combining Rewards

	Related Fields
	State and Action Abstractions in Reinforcement Learning
	Continual Reinforcement Learning
	Programmatic Reinforcement Learning
	Cooperative Multi-Agent Reinforcement Learning

	Promising Domains for Hierarchical Reinforcement Learning
	Example Environments and Applications

	Conclusion

