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Background
Metric learning provides a first-principle method for state abstraction.



Motivation: State Abstraction in RL

Scaling RL to high-dimensional, distraction-rich domains remains 
challenging

=> => 
[1.15, 
2.53, 
3.45, 
-2.02, 
…]

Observations

Proprioceptive states

Distracting DMC: Over 90% pixels are task-irrelevant

a compact state



Percentage of Distracting (Task-irrelevant) Pixels

Noise can be structured!
E.g., temporally dependent

DMC with distraction



State Abstraction

- A good abstraction gives a good problem 

formulation (George Konidaris, 2019)

- Benefits: sample efficiency, 

generalization/robustness, computation 

efficiency, better value estimation, …

- State abstraction: traditionally by partitioning 

the states space using equivalence relation
- How to define states as equivalent?

State may be 
high-dimensional, e.g., 
pixel input, torque 
control parameters

A “lossless compression” of an MDP

https://www.sciencedirect.com/science/article/pii/S2352154618302080


Examples of State Abstraction

Traditionally, it is done by aggregating the states with exact standards

- For example, two states are deemed equivalent if:

Towards a Unified Theory of State Abstraction for MDPs, Li et al., 2006

Bisimulation
Value-preserving Abstraction

Policy-dependent Bisimulation
Denoised MDPs (Wang et al. 2023)

https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=ca9a2d326b9de48c095a6cb5912e1990d2c5ab46
https://arxiv.org/pdf/2206.15477


Bisimulation Relation



Done 
State

Base case

Move right

R=1

R=1

Illustrative example of bisimulation relation
Suppose the robot can only move right :)

Observation

Bisimilar!

1

2



Done 
State

Base case Recursive step

Move right

Move right

Move right

Known to be
bisimilar

Task-irrelevant noise

R=1

R=1

R=2

R=2

Illustrative example of bisimulation relation
Suppose the robot can only move right :)

Observation

Bisimilar!

1

2

3

4

1

2



Limitations of State Aggregation

- State abstraction: traditionally by partitioning the 

states space using equivalence relation

- Bisimulation relation: reward & transition 

equivalence (under same actions)

- Dichotomy: two states are either bisimilar or not

- Doesn’t work for high-dimensional observations

- Hard to compute online

State may be 
high-dimensional, e.g., 
pixel input, torque 
control parameters

A “lossless compression” of an MDP



Metrics: Relaxing State Aggregation

If P is deterministic

Behavioral metrics: a broader class that quantify state similarity based on 
differences in R & P



Behavioral Metric (distance) Learning & Denoising representation
- Behaviorally similar states should have close representations, vice versa

           x                                   φ(x) = z = (z1, z2)

z2

z1

1

2

3

4
φ

Map noisy observations into a 
structured representation space

Distances reflect diff. in 
reward and transition 
smoothly

O

Described by behavioral metric



Conceptual Analysis

We provide a unified framework, instantiating prior works.



Conceptual Analysis on Behavioral Metric Learning in RL 



Target Metric dX : a desired behavioral distance between states



Recall BSM:

Policy-dependent Bisimulation Metric (PBSM)



Matching under Independent Couplings (MICo)



Simple State Representation (SimSR)



Robust Approximation (RAP)



To approximate an isometric embedding: An example



Other Important Design choices in Metric Learning

- Self-prediction (ZP) loss

- Reward prediction (RP) loss

- Metric loss function l (MSE/Huber)

- Target trick - using target network for one observation in dΨ：

(from MICo)



Other Important Design choices in Metric Learning

Normalization in the representation space

- L2 normalization

- MaxNorm: adjust the diameter of the vector so that dΨ is bounded theoretically

- LayerNorm (as default design choice in CNNs in prior work)

(from SimSR)

(from DBC-normed)



Two baselines, five metric learning methods



Denoising and Metric Learning

Many works motivate metric learning through denoising. But,

- What is denoising exactly?

- Why (why not) metrics denoise?

This motivates our study design.

 

Conceptual Analysis:



BMDP, EX-BMDP: Formalizing Distracting Environments 

(underlying)



- One z can correspond to many x

- Each x corresponds to only one z

- Exist an oracle encoder that recovers z 

from x

[1.15, 
2.53, 
3.45, 
-2.02, 
…]



s: robot state
ξ: video frame index
q: a rendering function



What is denoising?



Why do Metrics Help with Denoising?



Why do Metrics not Help with Denoising?



Recap

1. State abstraction: aggregation, bisimulation relation, metrics

2. Isometric embedding: connecting metric and representation learning

3. A general form of target metrics (in benchmarked works): [dR + dT]

4. How to approximate the target metrics

5. Promising application: denoising [removing task-irrelevant noise]

6. Why / why not metrics help with denoising?



Our Study Design
Driven by multiple research questions, we think critically about how to 

move this area forward.





★ Introduce diverse state-based and pixel-based noise settings based on EX-BMDP

State-based envs:

- IID Gaussian Noise (dims and stds can be varied)
- IID Gaussian Noise with Random Projection

Noise Settings

One run, one A sampled



Noise Settings
Pixel-based envs (backgrounds can be grayscale or colored):

- IID Gaussian Noise applied per-pixel
- Natural Images: replacing clean background with one randomly 

selected image (consistent in a run) -> visual complexity only
- Natural videos: replacing clean background with videos (playing in a 

loop); temporally dependent
Prior work



In-distribution (ID) vs. Out-of-distribution (OOD) Generalization

The training and testing 
environment are identical

Training Evaluation Training Evaluation

The training and testing environment 
share the same task-relevant parts 

but differ in noise distributions

ID Generalization OOD Generalization (prior work)



General Architecture

EX-BMDP wrapper
Noise

Base MDP 
(DMC-state 

MDP)

RL 
Encoder

Actor / 
Critic

Denoising 
evaluation

Performance 
evaluation

Transition 
model

Reward 
model

obs

action

RL algorithms 
(metric learning, losses)



Quantifying Denoising
We introduce the denoising factor (DF), a measure that quantifies an 

encoder’s ability to denoise.



Anchor x

Positive examples x+
Agent can view them 
as same observations

Negative examples x-
Any randomly sampled 

observations



Positive & Negative Scores



Denoising Factor (DF)



Isolated Metric Estimation Setting

Agent encoder: 

- Optimized by RL losses (e.g., Q loss) and used in end-to-end training

Isolated metric encoder: 

- Optimized by metric losses (or more broadly, a different combination 
of objectives than agent encoder), 

- Only used to evaluate DF

√ Remove other losses on representation from analysis

√ Ensure a fixed data collection (π), and enable fair comparison of 
denoising capability (DFs) of different isolated metric encoders!



Encoder

Critic

Q loss

Actor

Actor loss

Data

SAC Architecture

Encoder

Transition 
Model

Reward 
Model

Critic

RP LossZP Loss

Q loss

Actor

Actor loss

DataDeepMDP



Encoder

Transition 
Model

Reward 
Model

Critic

Metric Loss RP LossZP Loss

Q loss

Actor

Actor loss

DataMetric Learning Alg.



Agent 
Encoder

Transition 
Model

Reward 
Model

Critic

Metric Loss RP LossZP Loss

Q loss

Actor

Actor loss

Metric 
Encoder

DataIsolated Metric
Evaluation
(an instantiation)

SAC



Experiment

- Benchmarking result on various tasks and noise settings
- Understanding overall task difficulty and agent’s performance on aggregate (~300 settings)

- Case study: What matters in metric (and representation) learning?
- Identifying key design choices that lead to performance gain

- Isolated Metric Evaluation Setting: Does Metric Learning Help with Denoising?

- Understanding the connection between metric learning and denoising

- OOD Generalization Evaluation on Pixel-based Tasks
- The setting of interest in previous work



Comprehensive Benchmarking

Settings (in DMC):

- 20 state-based tasks * 10 IID Gaussian noises (varying dim/std)
- 14 pixel-based tasks * 6 background noises

Aggregating result respectively across: 

- All tasks, in benchmarking section
- 12 seeds for state-based, 5 seeds for pixel-based envs
- Each run we aggregate 10 eval point from 1.95M-2.05M



- SimSR perform the best (but why?)
- Increasing the number of noise dimensions cause moderate reward drop
- Well-performing methods are robust to noise variations

State-based benchmarking result: IID Gaussian Noise



Pixel-based benchmarking result

- RAP generally perform the best (but not in state-based tasks!)
- Grayscale video setting is not much harder than clean background 

setting!



Additional objectives trade off computation efficiency

Relative update time

- Optimizing a metric loss (e.g., in MICo) is as expensive as a ZP loss (e.g., 
in DeepMDP), per runtime comparison.



Task difficulty 
benchmarking:

Aggregating 
scores for 
different agents 
(7 methods, all 
noise settings)

A wide spectrum 
of task difficulty!

(show state-based as example)



Case study: with (R’) / w/o (R) LayerNorm on representation
6 representative easy-to-hard tasks are sampled for later analysis.

Most methods benefit from LayerNorm in the representation space

DeepMDP (RP+ZP) with LayerNorm performs comparably to SimSR



Case study: SimSR with / w/o ZP

- ZP is essential to SimSR’s success!



Case study: other design choices

- Huber loss and target trick provides moderate amount of help



Case study: hard noise setting (IID Gaussian with random projection)

Much harder, but DeepMDP / SimSR remain relatively robust

6 representative tasks aggregation



Case study: takeaways

- Most methods benefit from LayerNorm in the representation space
- may due to a stable representation and gradient norms, and help numerical stability in 

extrapolation of the metrics and Q values

- DeepMDP with LayerNorm performs comparably to SimSR

- ZP loss is crucial for SimSR’s success in noisy state-based task (though 

many methods even do not show they are using ZP!)
- DeepMDP (RP+ZP) + LayerNorm on par with SimSR

- Other tricks help but marginal

- DeepMDP and SimSR remain relatively robust to the hard IID Gaussian + 

random projection noise



Isolated Metric Evaluation Setting

No 
LayerNorm

With 
LayerNorm

ZP onlyZP + RP

ZP + metric 
loss

Learned metric denoises, but not 
better than the representation 
obtained by optimizing ZP



OOD Generalization for 14 pixel-based tasks
Methods struggle to generalize in both grayscale and colored image 
settings (lacking of “domain randomization”)



Grayscale video noise (widely used) is not challenging enough for OOD 
generalization as baselines generalize well.



Thanks for your attention!

Takeaways

- Evaluate first in simple, controlled settings to build foundational insight

- Support metric‑learning claims via direct measures (e.g, denoising factor) and 

distinguishing ID vs. OOD generalization

- Self‑prediction (ZP) loss and normalization schemes are decisive design 

choices shaping representation and metric quality

- Examine when metric learning offers unique benefit, since incorporating ZP 

loss and LayerNorm into SAC can achieve similar advantages

CodePaperBlog



(Largest) 
Bisimulation relation 

(s: R, P)

Bisimulation metrics

Homomorphism
(s,a: R, P)

Lax bisimulation 
metrics

π-bisimulation 
metrics

DBC (Amy)

DBC-normed (Mete)

DHPG 
(Sahand)

MICo (Pablo)

Abstractions 
(Lihong, Nan)

SimSR 
(Hongyu)

RAP
(Jianda)

Self-predictive
DeepMDP

Arbitrary 
bisimulation relation

Contrastive 
methods

Deep-learning-friendly 
representation learning

Reconstru
ction (φo)

Knowledge Map

How to deal with Wasserstein and R/P?
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#

