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Background

Metric learning provides a first-principle method for state abstraction.



Motivation: State Abstraction in RL

Scaling RL to high-dimensional, distraction-rich domains remains
challenging

- [1.15,
i Y = 2.53,
g 4 => 345,

Observations a compact state

Distracting DMC: Over 90% pixels are task-irrelevant



Percentage of Distracting (Task-irrelevant) Pixels

Task Noise Ratio (%) DMC with distraction
cartpole balance 98.3%

cartpole balance_sparse  98.3%

walker stand 92.6%

finger spin 94.3%

cartpole swingup 98.3%

ball_in_cup catch 99.0%

walker walk 92.6%

point_mass  easy 99.7%

cartpole swingup_sparse  98.3%

reacher easy 96.5%

pendulum swingup 98.9%

|cheetzh fun 95A% | Noise can be structured!
walker run 92.6%

hipper tiop 97.3% E.g., temporally dependent




. State may be
State Abstraction high-dimensional, e.g.,
pixel input, torque
control parameters

- A good abstraction gives a good problem

formulation (George Konidaris. 2019)

- Benefits: sample efficiency,
generalization/robustness, computation
efficiency, better value estimation, ...

- State abstraction: traditionally by partitioning
the states space using equivalence relation

- How to define states as equivalent?

A “lossless compression” of an MDP


https://www.sciencedirect.com/science/article/pii/S2352154618302080

Examples of State Abstraction

Traditionally, it is done by aggregating the states with exact standards

- For example, two states are deemed equivalent if:

Va€ A, P(|zi,a) =P(| z2,0), Va €A, Vr,  Q7(z1,0) = Q"(z3,0)
R(ml’ a) - R(CEQ, a) Va € A’ Q*(wla a’) = Q*($2aa’)

Bisimulation bQ- Do~

Value-preserving Abstraction

R™(z1) = R"(z2), P7(-|21) =P"(- | z2) A .
Policy-dependent Bisimulation % ( | ml) = ( | m2)’
R™(z) := Egun(jz)[R(z, a)] Denoised MDPs (Wang et al. 2023)
'Pﬂ'(- | :B) = ]Ea,vﬂ-(.m['P(' | :c,a)]

Towards a Unified Theory of State Abstraction for MDPs, Li et al., 2006


https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=ca9a2d326b9de48c095a6cb5912e1990d2c5ab46
https://arxiv.org/pdf/2206.15477

Given an MDP M = (S, A, P, R,7), let Bisimulation Relation
S/f~v={CC8|C#0,Vs,€C: 51~ s}

denote the set of equivalence classes under ~ (each C is one class). A
bisimulation relation ~C § x § is the largest relation such that for any
51,5 € S with s;1 ~ 55 and Va € A:

R(s1,a) = R(s2,a),
VCeS/~: Z P(s’| s1,a) = Z P(s'| s2, a).

s'eC s'eC

Thus, bisimilar states yield identical immediate rewards and transition
probabilities over each equivalence class C.



Illustrative example of bisimulation relation
Suppose the robot can only move right :)

; @ Observation

M iaht Done e o °
overg State BISImI|CI I'!

Base case



Illustrative example of bisimulation relation
Suppose the robot can only move right )

/ Task-irrelevant noise

Observation

R=1 3

Move right Done c. .
9 State Bisimilar! Known to be

/ bisimilar

Base case

Recursive step



o ] State may be
Limitations of State Aggregation high-dimensional, e.g.,
pixel input, torque
control parameters

- State abstraction: traditionally by partitioning the
states space using equivalence relation

- Bisimulation relation: reward & transition
equivalence (under same actions)

- Dichotomy: two states are either bisimilar or not

- Doesn’t work for high-dimensional observations

- Hard to compute online

A “lossless compression” of an MDP



Metrics: Relaxing State Aggregation

Bisimulation metrics (BSMs) relax the bisimulation relation by allowing
smooth variation based on differences in reward and transition dynamics.
It quantifies behavioral similarity between observations:

d™(x1, %) = TE%(CR R(x1,a) — R(x2, a)|
+ er Wa(d™)(P(-| x1,2), P(-] 2, 3))).
d~(z},z5) If Pis deterministic

Specifically, the bisimulation relation is recovered as the zero-set of the
metric:
x1~x2 <<= d7(x,x)=0.

Behavioral metrics: a broader class that quantify state similarity based on
differences inR & P



Behavioral Metric (distance) Learning & Denoising representation

- Behaviorally similar states should have close representations, vice versa
Described by behavioral metric

e(X) =z = (21, 22)

Map noisy observations into a

Z1 :
A structured representation space Al
1 . 3
. 94
Dis'roncesﬁ,re"flec’r diff. in -
reward and transition
smoothly
/ ‘A.<(p\ ’ ..-.
> -

Z2
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Conceptual Analysis IRR
TN

We provide a unified framework, instantiating prior works.

Table 1: Summary of key implementation choices for the benchmarked methods.

- - Metric Target Other  Transition Normali
Mctiiag dr dr o Loss Tri%k Losses Model -zation
SAC (Haarnoja et al., 2018) — — — _ — — — —
DeepMDP (Gelada et al., 2019) — — — — — RP + ZP Probabilistic —
DBC (Zhang et al., 2020) Huber W5 closed-form Huber MSE — RP + ZP Probabilistic —
DBC-normed (Kemertas & Aumentado-Armstrong, 2021) Huber W5 closed-form Huber MSE — RP + ZP Deterministic MaxNorm
MICo (Castro et al., 2021) Abs. Sample-based  Angular Huber v — — —
RAP (Chen & Pan, 2022) RAP Wj closed-form Angular Huber — RP + ZP Probabilistic —

SimSR (Zang et al., 2022) Abs. Sample-based Cosine Huber — ZP Prob. ensemble L2Norm




Conceptual Anqusis on Behavioral Metric Learning in RL

We aim to find an encoder that maps noisy observations into a structured
representation space, which facilitates RL by ensuring that task-relevant
variations are captured.

A natural way to formalize this goal is through an isometric embedding®:

Definition (Isometric Embedding)

An encoder ¢ : X — W is an isometric embedding if the distances in the
original space (X', dy) are preserved in the representation space (V, dy).
Formally,

dy(x1,x2) = dy(d(x1),d(x2)), Vxi,x € X,

where dy is the target metric and dy is the representational metric.

o




Target Metric dx: a desired behavioral distance between states

A target metric, inherent in an MDP, captures differences in rewards and
transition dynamics:

d)((Xl,XQ) = CR dR(Xl,Xz) -+ €T dT(dx)(P(| Xl), P(l XQ)),
~ dy(x1,x) = crdr(ri, ) + cT ar(dAX)(ﬁ(| x1), P(-| x2)).

Here r1. rp are sampled immediate rewards, dr and d7 denote immediate
and long-term similarity, and dgr, dt are their approximants.



Policy-dependent Bisimulation Metric (PBSM)

Recall BSM:  d™(x1,x2) = mca;‘((cR R(x1, a) — R(x2, )|

(1)
+ cr Wi(d™)(P(:] x1.3), P(| x2,a))>.

Policy-dependent bisimulation metrics (PBSMs) restrict similarity to the
current policy, avoiding the max over actions. Define
R™(x) = Eana[R(x,a)],  P(| x) = Eanr[P(-] x, 2)]- g

Then

d"(x1,x2) = cr |R™(x1) — R™(x2)| (2)
+ e Wi(d™)(P™(+| x1), P (- | x2))-




Matching under Independent Couplings (MICO) g

MICo uses the independent coupling to approximate the 1-Wasserstein
term, trading exactness for efficiency:

u"(x1,x2) = g [R"(x1) — R" (x2)|
+ CT EX{pr(_|xl) [UW(X{, Xé)] ! (3)

Xy~P™(+|x2)

Here (x1, x5) are sampled independently from each transition.



Simple State Representation (SImSR) %
A

Simple State Representation (SimSR) further replaces the true dynamics
by a learned model P™ and embeds states isometrically using a cosine

distance:

u™(x1,x2) = cr |R™(x1) — R™(x2)|
+ cT1 Exiwﬁﬂ(_lxl)[u”(x{,xé)]. (4)

o~ P (| x2)
Under isometry,

u™(x1,x2) = dyx(x1,x2) = dy(d(x1),d(x2)) = 1 — cos(p(x1), d(x2)).



Robust Approximation (RAP)

RAP (Chen and Pan, 2022) improves the approximation of the reward
component dgr of the bisimulation metric by proposing a better surrogate
dr. This is motivated by the following derivation:

dr(x1,x2) = |R™(x1) — R™(x2)|

- \/Eal,agr\nr [(R(Xl, a1) — R(x, 32))2] — Var[r, ] — Var[r,]

@ Here, ry is a random variable such that p(ry, = R(x, a)) = n(a | x).



To approximate an isometric embedding: An example

Metric Loss Function .Jy,. To approximate an isometric embedding, metric learning methods
optimize this general objective:

Tield) =€ ((1¢(¢(m1), &(z2)) — (ix(:ltl,:n-z)) : ©6)
éx(ml,xg) _ (JRJR(Tl,7‘2)+CT(iT(d\y)(ﬁ(1/)l | .’L‘l),ﬁ(’lﬁ, | :132))

In DBC (Zhang et al., 2020), to approximate| PBSM |(Def. 6), the metric loss is defined in the fol-
lowing form:

Tn(9) = (n«b(m—au)ul = I =ral = el 1) (P(¥ | (1), a1 ), P (v |¢($2)s02))1) .

dy (#(=1),¢(z2)) ~dp(ry, T2)+dT(dw)(7’(¢7|f-t1),'P(d)'lmz)) dx(zy,x2)

(15)



Other Important Design choices in Metric Learning

- Self-prediction (ZP) loss Jzp(0,v) = —log P,(¢(z") | #(x),a),
- Reward prediction (RP) loss  Jre(¢, k) = (Re(é(z),a) — )2,

- Metric loss function /(MSE/Huber) ;,.(4) =dw(¢(w1),</)(w2)) = (ix(zuwz)),
- Target trick - using target network for one observation in dv:

k. 2 —. 2
Uo(z,y) = b () ][5 ; |da{w)ll5 + BO(do (), da (1))

(from MICo)



Other Important Design choices in Metric Learning

Normalization in the representation space

Y
- L2 normalization L2Norin(y) = [l.-  (from SImSR)

- MaxNorm: adjust the diameter of the vector so that dv is bounded theoretically

dy((21), 8(22)) = dx(z1,72) < 5 R_(maxR(r,a) — minR(z, a)) := C.

—CcT T,a

>
v, if |9l < 5, |

MaxNorm(v)) = {Q i otherwpise 2 (from DBC-normed) <
2 [I#ll,° o

- LayerNorm (as default design choice in CNNs in prior work)

LayerNorm(¢)) = a ® + 3,

o%() + e



Two baselines, five metric learning methods

Table 1: Summary of key implementation choices for the benchmarked methods.

- - Metric Target Other  Transition Normali
Metad dr dr L Loss Tri%k Losses Model -zation
SAC (Haarnoja et al., 2018) —— — — . S = =
DeepMDP (Gelada et al., 2019) — — — — RP + ZP Probabilistic —
DBC (Zhang et al., 2020) Huber W5 closed-form Huber MSE RP + ZP Probabilistic —
DBC-normed (Kemertas & Aumentado-Armstrong, 2021) Huber Wj closed-form Huber MSE RP +ZP Deterministic MaxNorm
MICo (Castro et al., 2021) Abs. Sample-based  Angular Huber — — —
RAP (Chen & Pan, 2022) RAP W5 closed-form Angular Huber RP + ZP Probabilistic —
SimSR (Zang et al., 2022) Abs.  Sample-based  Cosine Huber ZpP Prob. ensemble L2Norm




Conceptual Analysis:
Denoising and Metric Learning

Many works motivate metric learning through denoising. But,
-  What is denoising exactly?
- Why (why not) metrics denoise?

This motivates our study design.



BMDP, EX-BMDP: Formalizing Distracting Environments

A block MDP (Du et al., 2019) is a tuple
<X? Z~A aq,p, R 7)3

where .
(underlying)

X : observation space, Z: latent state space, A: action space,
qg: Z2— A(X), x~q(-|2z),
p: ZxA—>A(Z), R:ZxA—->R, ~€]0,1).



Block structure:

V21,20 € 2, 21 # z2 => supp(q(- | z1)) Nsupp(q(- | z2)) = 0,

guarantees existence of an oracle encoder (inverse) g~ 1: X — Z.

[1.15,

One z can correspond to many x

Each x corresponds to only one z

Exist an oracle encoder that recovers z

from Xx




An EX-BMDP (Efroni et al., 2021) extends the block MDP by
decomposing
Z2=8xE, a=|5EL)

where s € S is the task-relevant state and £ € = is exogenous noise.
Transitions factorize as

p(s'.€ | s,§,a) = p(s' | s,a) p(& | £).

The reward is independent of noise:

G50 2 R s: robot state
EX-BMDPs guarantee a denoising map ¢ video frame index
q: a rendering function
D: Z— S8,

and combined with the oracle encoder g~ ! one recovers

o) = D(q‘l(x)), st =" ().



What is denoising?

We define denoising as the removal of task-irrelevant noise £. Formally:

Definition (Perfect Denoising)

An encoder ¢ achieves perfect denoising in an EX-BMDP if, for any
triplet x, x;,x_ € X satisfying

¢*(x) = *(x4) # ¢"(x-),

it holds that
P(x) = d(xy) # o(x-).

That is, ¢ exactly replicates the abstraction of the oracle encoder ¢*.




Why do Metrics Help with Denoising?

e Bisimulation metric (BSM): Achieves perfect denoising in
EX-BMDP (dy(x,xy) = 0), so isometric embedding maps bisimilar
observations to identical representations (Ferns et al., 2004, 2011).

e Policy-dependent Bisimulation (PBSM): Guarantees denoising
when the policy is exo-free (Islam et al., 2022).

@ MICo distance: Does not generally assign zero distance to bisimilar
pairs unless both policy and transitions are deterministic, yet empirical
evidence shows it can still cluster behaviorally similar observations
(Castro et al., 2021; Chen and Pan, 2022; Zang et al., 2022).



Why do Metrics not Help with Denoising?

Intractable BSM: Exact computation is prohibitive, leading to
reliance on PBSM and MICo approximants (Castro, 2020).

Policy-dependence of PBSM: May fail to denoise under arbitrary
(even optimal) policies (Islam et al., 2022).

Off-policy sampling: Approximated reward metric dr uses
replay-buffer data, conflicting with the on-policy metric assumption.

Model approximation error: Learned transition models introduce
bias in d7 (Kemertas and Aumentado-Armstrong, 2021).

Loss interactions: Metric loss combined with ZP and critic losses
can degrade denoising effectiveness in practice.



Recap

State abstraction: aggregation, bisimulation relation, metrics
Isometric embedding: connecting metric and representation learning
A general form of target metrics (in benchmarked works): [dr + dr]
How to approximate the target metrics

Promising application: denoising [removing task-irrelevant noise]

o u A NN

Why / why not metrics help with denoising?



Our Study Design

Driven by multiple research questions, we think critically about how to
move this area forward.



Aspect

Task Diversity

Generalization
Evaluation

Evaluation
Signal

Loss Design

Prior Work

Limited test environments: few tasks with
grayscale natural video backgrounds

Entangled: evaluation only on unseen videos
(O0D), hard to know the source of difficulty

Indirect: impact on evaluation return

Mixed: multiple intertwined losses obscure metric
learning effect

Our Study Design

Diverse state-based and pixel-based noise
settings across tasks

Clear separation of ID and OOD generaliza-
tion via distinct train/test noise

Direct: proposed Denoising Factor (DF) as a
targeted representation measure

Isolated metric evaluation disentangles rep-
resentation from RL objectives



Noise Settings

% Introduce diverse state-based and pixel-based noise settings based on EX-BMDP
State-based envs:

- IID Gaussian Noise (dims and stds can be varied)
- IID Gaussian Noise with Random Projection

Noise setting: Noise setting:
IID Gaussian Noise IID Gaussian Noise with Random Projection

(9
n W | aid _ |7F

J Concatenate &

c Rn—}—m] ;[ x;'l) = Rn+7n
J Project L

m n—+m n+m itd £
{5 ~N(u ,0°T) €R [A e RUmmx(ntm) 4, ;' X N(i/',0'?)|  One run, one A sampled




Noise Settings
Pixel-based envs (backgrounds can be grayscale or colored):

- IID Gaussian Noise applied per-pixel

- Natural Images: replacing clean background with one randomly
selected image (consistent in a run) -> visual complexity only

- Natural videos: replacing clean background with videos (playing in
loop); temporally dependent

"

Original Clean IID Gaussian Grayscale Image Colored Image Grayscale Video Colored Video

Prior work

*




In-distribution (ID) vs. Out-of-distribution (OOD) Generalization

The training and testing environment
share the same task-relevant parts
but differ in noise distributions

The training and testing
environment are identical

Training Evaluation Training Evaluation

ID Generalization OOD Generalization (prior work)



General Architecture

EX-BMDP wrapper
Noise

Base MDP
(DMC-state
MDP)

RL algorithms
(metric learning, losses)

obs RL __ Actor/ Performance
. Encoder Critic evaluation
Reward Transition
model model
Denoising

evaluation



Quantifying Denoising

We introduce the denoising factor (DF), a measure that quantifies an
encoder’s ability to denoise.



Positive examples x+ Negative examples x-

Agent can view them Any randomly sampled
as same observations observations

| ‘. kﬁ'

Anchor x




Positive & Negative Scores

To compute the denoising factor, select an anchor x ~ p,, a positive
example x with ¢*(x5) = ¢*(x), and a negative example x_ sampled IID.

Definition (Positive score)

Posg (o) =K, e o), [dw ((x), p(x+))]-
x+~q(-|* (x),€+)

Definition (Negative score)

Negg, (¢) = E o [dW(¢(X)a¢(X—))]-

X X— ™~ P




Denoising Factor (DF)

The denoising factor measures the|l normalized difference between negative
and positive scores:

Definition (Denoising factor)

_ Negg, (¢) — Posg,(¢)
Negg, (#) + Posg, (¢)

e [-1, 1].

A higher DF indicates stronger denoising ability, with the oracle encoder
¢* achieving DF = 1.



Isolated Metric Estimation Setting

Agent encoder:

- Optimized by RL losses (e.g., Q loss) and used in end-to-end training

Isolated metric encoder:

- Optimized by metric losses (or more broadly, a different combination
of objectives than agent encoder),
- Only used to evaluate DF

vV Remove other losses on representation from analysis

v Ensure a fixed data collection (1), and enable fair comparison of
denoising capability (DFs) of different isolated metric encoders!



SAC Architecture

Data

Q loss
T Encoder T

Critic =— —>  Actor

Actor loss

DeepMDP

Data

ZP Loss RP Loss

T T

Transition Reward
Model Model
Encoder
Q loss Actor loss

T T

Critic =— —>  Actor



Data

V

7P Loss Metric Loss RP Loss

S

Metric Learning Alg.

Transition Reward
Model < > Model
Encoder
Q loss Actor loss

T T

Critic —=— —>  Actor



Isolated Metric

Evaluation
(an instantiation)

Z.P Loss
A

Transition
Model

Q loss

N

Critic

<

Data

|

A

Metric Loss RP Loss

A

Metric
Encoder

Agent
Encoder

A

Reward
Model

I —

Actor loss

T-

—>  Actor

SAC



Experiment

Benchmarking result on various tasks and noise settings
- Understanding overall task difficulty and agent’s performance on aggregate (~300 settings)
Case study: What matters in metric (and representation) learning?
- Identifying key design choices that lead to performance gain
Isolated Metric Evaluation Setting: Does Metric Learning Help with Denoising?
- Understanding the connection between metric learning and denoising
OOD Generalization Evaluation on Pixel-based Tasks

- The setting of interest in previous work



Comprehensive Benchmarking

Settings (in DMC):

- 20 state-based tasks * 10 IID Gaussian noises (varying dim/std)
- 14 pixel-based tasks * 6 background noises

Aggregating result respectively across:

- All tasks, in benchmarking section
- 12 seeds for state-based, 5 seeds for pixel-based envs
- Each run we aggregate 10 eval point from 1.95M-2.05M



State-based benchmarking result: IID Gaussian Noise

—4— SAC —4— DeepMDP —4— DBC 4— DBC-normed —4— MICo —4— RAP —4— SimSR

900 900 10 \\\‘
- - -~ -l =
800 800 go9 — A
© o lfOB —
© 700 = 700 ,
) < | B e
: H - ' i t| 07
& 6001 g 600 2
c | c c06
3 500 g 500 o
400 400 s
s 04
300 300
03

0 20 40 60 80 100 120 0: 1 2 3 4: 8 6. 7 B 0 20 40 60 80 100 120 40 3 28 8.8 @ ‘8
Noise Dim Noise Std Nolse Dim Noise Std

- SimSR perform the best (but why?)
- Increasing the number of noise dimensions cause moderate reward drop
-  Well-performing methods are robust to noise variations



Pixel-based benchmarking result

- RAP generally perform the best (but not in state-based tasks!)
- Grayscale video setting is not much harder than clean background

setting!

Clean Grayscale Images Colored Images Grayscale Video  Colored Video IID Gaussian
SIimSR | [ ' I | !
RAP 1 1 1 ] 1 1

MICo [} 5 | 1 I ' 1

DBC-normed @ g %) == = i) [it &l il [ =]
DBC o e 2] 3 5 L 1] i 1]

DeepMDP a i o8 173 7 | ot B o |
SAC = = =5 e &) Ll [ P £

300 450 600 750 300 450 600 750 300 450 600 750 300 450 600 750 300 450 600 750 300 450 600 750



Additional objectives trade off computation efficiency

Relative update time

Table 12: Relative time spent on model updates on NVIDIA L40S GPUs under the same task
(walker/walk, with S = R?* and = = R*?). Values represent the multiple of SAC’s updating time.
Key hyperparameters affecting the speed are set identically for all methods to Table 9.

SAC DeepMDP DBC DBC-normed MICo RAP SimSR

Pixel-based 1.00 1.44 2.03 242 133 220 LS
State-based  1.00 1.42 1.76 1.95 1.39° 208 1.68

- Optimizing a metric loss (e.g., in MICo) is as expensive as a ZP loss (e.g.,
in DeepMDP), per runtime comparison.



Task difficulty
benchmarking:

Aggregating
scores for
different agents
(7 methods, all
noise settings)

A wide spectrum
of task difficulty!

(show state-based as example)

Task Avg Reward Max Reward Min Reward Max/Min  Difficulty
ball_in_cup catch 934.8 9774 841.7 1.2 Easy
cartpole balance 919.4 997.3 791.2 1.3 Easy
cartpole balance_sparse 877.7 983.6 T3 1.3 Easy
walker stand 834.6 979.0 437.8 22 Easy
cartpole swingup 818.1 874.1 707.6 1.2 Easy
walker walk 805.7 961.9 382.4 2.5 Easy
reacher casy 740.1 955.1 453.0 2.1 Medium
finger spin 728.8 923.6 498.5 1.9 Medium
quadruped  walk 703.1 948.9 2455 39 Medium
cartpole swingup_sparse 647.3 839.1 5319 1.6 Medium
reacher hard 641.1 853.0 340.3 2.5 Medium
finger turn_easy 587.8 926.5 207.7 4.5 Medium
walker run 5458 776.1 117.4 6.6 Medium
cheetah run 5334 859.0 129.8 6.6 Medium
pendulum swingup 5143 824.5 247.2 3.3 Medium
quadruped run 460.7 864.3 199.0 43 Hard
finger turn_hard 435.6 893.0 102.6 8.7 Hard
hopper stand 261.9 878.4 223 393 Hard
acrobot swingup 75.7 246.1 112 22.0 Hard
hopper hop 64.7 243.4 15 1624 Hard




Case s’rudy: with (R) / w/0 (R) LayerNorm on representation

6 representative easy-to-hard tasks are sampled for later analysis.

Methods

Task SAC DeepMDP DBC DBC-normed MICo RAP SimSR
PR ot o T s R 967.5+123 928.74323 814.1486.6 973.7+124 966.6+9.2 950.3+71.2 999.5+0.5
P R 97954201 994.6+36  943.6+24.1 975.5+19.9 936.14298 981.7+19.1 980.2+193
I R 5929+1766 32734885 201.9+4385 619.0+35.1 419.0+759 24064364 926.8+109
8 —€AY R 1 77064655 POSSOERI 1937422 57754337 745354760 41284393 934.64160
T R 635.3+198 23.9+26 628.9+25.7 4559+413  6494+11.1 760.6+19.4
" R 5345i536 | 7760459 34294545  759.84194  611.04225  661.64884  761.64200
andiu u R 233.84590 381.14649 219.5+63.5 433.3+47.3 4179+442 441.14937 84744217
9 ped/run o 4838460 WBONIEREN 29134550 50954354  467.44218 687398 8329634
P P——. R 177.6466.1 168.3+50.4 9794118 414.7449.5 207.24538 11084170 885.44245
i—— R 49574531 O2SBEMEN  95.9+124 47344399  335.14426  201.14263  917.14139
b v/h R 0.14+00 31.3+16.7 0.3403 51.1413.4 0.4403 0.8405 233.94+22.6
o i R 124449 195.44199 6.24+48 125.8422.3 1.8420 1.0+03 207.44+36.4

Most methods benefit from LayerNorm in the representation space

DeepMDP (RP+ZP) with LayerNorm performs comparably to SimSR



Case study: SImSR with / w/o ZP

Noise std: 8, Noise dim: 32

e SiMSR == SimSR (Basic) == SimSR (Basic, NO ZP) === SimSR (with RP)
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- ZP is essential fo SImSR’s success!



Mean Reward

Mean Dencising Factor

Case study: other design choices

Noise std: 8.0, Noise dim: 32
w DBC normed w—— DBC normed (Huber) == DBC normed (Target) == DBC normed (Huber & Target)
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- Huber loss and target trick provides moderate amount of help



Case study: hard noise setting (IID Gaussian with random projection)

6 representative tasks aggregation

~4- SAC —4— DeepMDP —4— DBC {~ DBC-normed ~4— MICo ~—4— RAP —$= SImSR
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Much harder, but DeepMDP / SImSR remain relatively robust



Case study: takeaways

Most methods benefit from LayerNorm in the representation space

- may due to a stable representation and gradient norms, and help numerical stability in

extrapolation of the metrics and Q values

DeepMDP with LayerNorm performs comparably to SimSR
ZP loss is crucial for SImSR’s success in noisy state-based task (though

many methods even do not show they are using ZP!)
- DeepMDP (RP+ZP) + LayerNorm on par with SimSR
Other tricks help but marginal

DeepMDP and SimSR remain relatively robust to the hard IID Gaussian +

random projection noise



Learned metric denoises, but not

Isolated Metric Evaluation Setting  better than the representation
obtained by optimizing ZP

Noise std: 8.0, Noise dim: 32

w— SAC = DeepMDP ~—— DBC w DBC-normed — MICo — SIMSR w— DeepMDP (w/o RP)
P+ RP ZP only
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OOD Generalization for 14 pixel-based tasks

Methods struggle to generalize in both grayscale and colored image
settings (lacking of “domain randomization”)

SImSR
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Grayscale video noise (widely used) is not challenging enough for OOD
generalization as baselines generalize well.
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Figure 10: Reward gap (performance in ID evaluation minus OOD evaluation) in the grayscale video setting
(left) and the colored video setting (right), aggregated on 14 pixel-based tasks in Table 9.
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Thanks for your attention! %

Takeaways s [=]
Blog Paper

- Evaluate first in simple, controlled settings to build foundational insight

- Support metric-learning claims via direct measures (e.g, denoising factor) and
distinguishing ID vs. OOD generalization

- Self-prediction (ZP) loss and normalization schemes are decisive design
choices shaping representation and metric quality

- Examine when metric learning offers unique benefit, since incorporating ZP

loss and LayerNorm into SAC can achieve similar advantages
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