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Abstract. Solving Constrained Horn Clauses (CHCs) is a fundamen-
tal challenge behind a wide range of verification and analysis tasks. To
enhance CHC solving without the laborious task of manual heuristic
creation and tuning, data-driven approaches demonstrate significant po-
tential by extracting crucial patterns from a small set of data points.
However, at present, symbolic methods generally surpass data-driven
solvers in performance. In this work, we develop a simple but effective
framework, Chronosymbolic Learning, which unifies symbolic infor-
mation and numerical data to solve a CHC system efficiently. We also
present a simple instance4 of Chronosymbolic Learning with a data-
driven learner and a BMC-styled reasoner5. Despite its relative simplic-
ity, experimental results show the efficacy and robustness of our tool. It
outperforms state-of-the-art CHC solvers on a test suite of 288 arithmetic
benchmarks, including some instances with non-linear arithmetic.

1 Introduction

Constrained Horn Clauses (CHCs), a fragment of First Order Logic (FOL), nat-
urally capture the discovery and verification of inductive invariants [2]. CHCs
serve as a general format for program safety verification6. They are widely used
in software verification frameworks including C/C++, Java, Rust, Solidity, and
Android verification frameworks [21, 24, 28], modular verification of distributed
and parameterized systems [18, 22], type inference [40], and many others [20].
Given the importance of these applications, building an efficient CHC solver
holds great significance. Nevertheless, the undecidability of CHC solving neces-
sitates tailored adjustments or designs for specific instances, demanding sub-
stantial effort and expertise.

4 The artifact is available on this link: https://github.com/Chronosymbolic/

Chronosymbolic-Learning
5 BMC represents Bounded Model Checking [9].
6 See Appendix A.2 for details.
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Remarkable progress in automating CHC solving has been achieved in recent
years. Existing approaches primarily fall into two categories: symbolic-reasoning-
based approaches and data-driven induction-based approaches. The former cen-
ters on designing novel symbolic reasoning techniques, such as abstraction refine-
ment [10], interpolation [29], property-directed reachability [4, 13], model-based
projections [26], and other techniques. While the latter focuses on reducing CHC
solving into a machine learning (ML) problem and then employing proper ML
models, such as Boolean functions [33], decision trees (DTs) [17], support vec-
tor machines (SVMs) [45], and deep learning models [39]. While data-driven
approaches show great promise towards improving CHC solving without the
painstaking manual heuristic tuning, data-driven CHC solvers still fall way be-
hind symbolic reasoning-based CHC solvers [41]. Fig. 1 illustrates key differ-
ences between these two categories. Symbolic approaches usually maintain two
zones approximating safe and unsafe “states” of a system represented by CHCs,
meticulously updated with soundness guarantees. Data-driven approaches ab-
stract symbolic constraints away by sampling positive and negative data points.
The sampling process usually requires some form of evaluation of the given con-
straints, thus, sampled data points are the outcome of complicated interactions
among multiple constraints, making data-driven approaches excel at captur-
ing useful global properties. However, as illustrated by the dashed grey line in
Fig. 1, the primary drawback of data-driven approaches is that the classifier
learned from samples may overlook safe regions that symbolic reasoning can
easily identify. Conversely, symbolic approaches are good at precisely analyzing
local constraints, delivering superior performance but potentially getting stuck
in a local region. Additionally, they struggle to identify essential patterns from
data samples, limiting their flexibility in addressing these problems.

Range of 
Variables

Positive Sample

Negative Sample

Data-driven Approach

Reasoning-based Approach

Safe Zone

Unsafe Zone

Chronosymbolic

Fig. 1: Overview of different approaches through the lens of learning from positive
and negative samples.

The motivation for our framework, Chronosymbolic Learning, is to de-
vise a learning framework integrating the strengths of both symbolic and data-
driven methods. Similar to data-driven approaches, a learner in Chronosym-
bolic Learning derives classifiers from sampled data points, a process attain-
able by standard machine learning approaches. However, rather than utilizing
these learned classifiers directly as hypotheses, we augment them with sym-
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bolic information summarized by a reasoner. Such symbolic information can be
viewed as a region of data points concisely expressed in a symbolic form, whereas
the learned classifiers serve as symbolic representations of generalized regions.
Instead of combining these two mechanically or parallelly, our method makes
the reasoner and learner mutually benefit from each other, as exemplified by
the green line of Fig. 1. It also lays the groundwork for seamlessly synergizing
the power of data learning with automated reasoning, offering a paradigm that
guides future efforts to incorporate cutting-edge ML techniques in CHC solving.

Main Contributions. Our contribution is mainly three-fold. First and foremost,
we propose a novel framework, Chronosymbolic Learning. As the name sug-
gests7, our goal is to solve CHCs with both numerical data samples and symbolic
information synchronously and synergistically. We provide formulations in order
to realize this desideratum, establishing the groundwork for the application of
advanced techniques in symbolic reasoning and machine learning. Secondly, we
build a simple yet potent instance of Chronosymbolic Learning in Python,
the standard programming language in the ML community, to substantiate our
claims. It comprises a data-driven learner interacting with a BMC-styled rea-
soner, alongside a verification oracle as a teacher. We also provide a discussion
on alternative design choices. Lastly, the main experimental results demonstrate
the effectiveness and robustness of our tool. It outperforms several state-of-the-
art CHC solvers on a test suite of 288 benchmarks, including some instances
with non-linear integer arithmetic.

2 Preliminaries

2.1 Constrained Horn Clauses

We discuss standard First Order Logic (FOL) formula modulo theory T , with
a signature Σ composed by constant symbols A (e.g., True ⊤ and False ⊥),
function symbols F (e.g., +, -, mod) and predicate symbols P. A Constrained
Horn Clause (CHC) C is a FOL formula modulo theory T in the following form:

∀X · ϕ ∧ p1(T1) ∧ · · · ∧ pk(Tk) → h(T ), k ≥ 0, (1)

where X stands for all variables in Ti and T , ϕ represents a fixed constraint over
F ,A and X w.r.t. some background theory T ; pi, h are uninterpreted predicate
symbols8, and pi(Ti) = pi(ti,1, · · · , ti,n) is an application of n-ary predicate sym-
bol pi with first-order terms ti,j built from F ,A and X ; h(T ) could be either
P-free (i.e., no predicate symbol appears in h) or akin to the definition of pi(Ti).

In this work, we explain our framework using the background theory of In-
teger Arithmetic (IA) if it is not specified. For simplification, in our work, the

7 The name Chronosymbolic Learning is a blend of the terms CHC, number (rep-
resented by “no.”), symbolic and synchronous.

8 “Predicates” for short.
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universal quantifier “∀” is omitted when the context is clear; and all terms ti,j
represent single variables (e.g., t1,1 = x, t1,2 = y).

The structure of a CHC can be viewed as a split based on the implication
symbol. The left hand side ϕ ∧ p1(T1) ∧ · · · ∧ pk(Tk) is called body and the right
hand side h(T ) is called head. If the body of a CHC contains zero or one predicate
symbol, the CHC is called linear. Otherwise, it is called non-linear.

Example 1. A simple CHC system H0
9 consisting of a fact C0, a non-fact rule

C1 and a query C2 is as follows:

C0 : ¬(a ≤ 0) ∧ b ≤ a ∧ c = 0 ∧ e = 0 ∧ d = 0→ inv(a, b, c, d, e)

C1 : c1 = 1 + c ∧ d1 = d+ a ∧ e1 = e+ b ∧ inv(a, b, c, d, e)→ inv(a, b, c1, d1, e1)

C2 : ¬(e ≥ a · c) ∧ inv(a, b, c, d, e)→ ⊥

In most cases, the terminology “CHC solving” refers to solving the satisfi-
ability (SAT) problem for a CHC system that is a set of CHCs containing at
least a query and a rule. A query Cq refers to a CHC that has a P-free head,
otherwise, it is called a rule Cr. Particularly, a fact Cf refers to a rule that has
a P-free body. For instance, in Example 1, C0 is a fact and a rule, C1 is a rule,
and C2 is a query. We define the clauses that both body and head are P-free as
trivial clauses because they can be simply reduced to ⊤ or ⊥.

Then, we formally define the satisfiability of a CHC system H:

Definition 1 (Satisfiability of a CHC system). H is satisfiable (SAT) iff
there exists an interpretation of predicates I∗ such that ∀C ∈ H, I∗ [C] is ⊤.
Otherwise, we say H is unsatisfiable (UNSAT).

Definition 2 (Solution of a CHC system). A solution of H consists of its
satisfiability and a proof of its satisfiability.

If H is SAT, the proof is the corresponding interpretation I∗, and I∗[p] is called
a solution interpretation of the predicate p. If H is UNSAT, the proof is a
refutation R demonstrating the nonexistence of a solution interpretation [3].
Therefore, the problem addressed in this work is to determine a solution for a
given CHC system.

2.2 CHC Solving as a Symbolic Classification Problem

To harness data samples, we cast the CHC solving problem as a symbolic clas-
sification task by utilizing the samples to produce hypotheses. For clarity, we
formally define the term hypothesis of a CHC system H:

Definition 3 (Hypothesis). A hypothesis of H is an interpretation Ĩ that is
a possible solution interpretation of H.

9 This is the benchmark nonlin mult 2.smt2 in our suite of test benchmarks.
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To determine a hypothesis for a specific predicate p denoted as Ĩ [p], [45] intro-
duces a lightweight machine learning toolchain that combines DT learning with
the results of SVMs. In this data-driven pipeline, positive and negative samples
are iteratively classified by SVMs until all samples are correctly categorized.
The resulting hyperplanes of SVMs, f(x) = wTxi + b, serve as attributes for
the DT. The DT then selects an attribute f(x0) and a corresponding threshold
c in the form of f(x0) ≤ c to create a new node in the way of maximizing the
information gain γ. Adjusting the threshold c and pruning the over-complicated
attribute combinations enhances generalizability and mitigates overfitting risks.
This process forms a DT, effectively segregating all samples into positive and
negative categories. The DT generates a learned formula10, denoted as Lp, which
can be arbitrary linear inequalities and their combinations in disjunctive normal
form (DNF). In our framework, this formula is termed a partition: a hypothesis
proposed only by the learner.

3 Chronosymbolic Learning

As shown in Fig. 1, pure data-driven and reasoning-based approaches exhibit
distinct limitations. The former is completely agnostic to the inherent symbolic
information within the CHC system, and relies solely on data samples for hy-
pothesis generation. The latter struggles to induce global patterns of solution
interpretations, and faces challenges in effectively integrating data samples into
its reasoning process. To address the limitations, we propose Chronosymbolic
Learning, a modular framework designed to amalgamate the strengths of both
approaches and harness the full potential of symbolic information and numerical
data concurrently.

LearnerReasoner

Teacher
Counterexample  c

CH
C

System
 Zones 𝒮𝒮,𝒰𝒰 Partition ℒ

CHCs (Incremental)

Sampling
Zones Samples s+ and s-

Converting

Hypothesis

Fig. 2: The architecture of Chronosymbolic Learning.

10 The fundamentals of DT, SVM, and the formula generation is specified in Ap-
pendix A.
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3.1 Architecture of Chronosymbolic Learning

Chronosymbolic Learning, depicted in Fig. 2, extends the paradigm of
“teacher11 and learner” [16], which solves a given CHC system by guessing and
checking [15, 37]. In this paradigm, the teacher and learner engage in iterative
communication. During each iteration, the learner formulates a hypothesis (refer
to Definition 3) of an interpretation called partition. The teacher then verifies the
hypothesis and provides instant feedback regarding its correctness. If incorrect,
the teacher supplies a counterexample (see Definition 8) elucidating the reason
for its inaccuracy.

In addition to this paradigm, in Chronosymbolic Learning, the learning
procedure is enhanced by a reasoner. The reasoner maintains a safe zone and an
unsafe zone, representing symbolic equivalents of positive and negative samples
respectively. These zones offer three main advantages: 1) They can be integrated
into the learner’s proposed hypothesis to enhance it; 2) They provide the learner
with additional samples; 3) They significantly simplify the UNSAT checking of
the CHC system12. We will provide an instance of Chronosymbolic Learn-
ing, detailing the functionality and intercommunication of its modules as in
Fig. 2. The learner we specify in Section 4.1 and reasoner in Section 4.2 can
be replaced by other algorithms capable of generating partitions and zones, as
discussed in Section 7. See Section 3.4 for the overall algorithm.

3.2 Samples and Zones

To introduce Chronosymbolic Learning, we first conceptualize samples and
zones. We shed light on obtaining the samples and zones in Section 4.

Positive samples and negative samples in our framework are defined as gen-
eralizations of reachable program states from facts and queries, and implication
samples are defined as borrowed from the concept in [16].

Definition 4 (Positive Sample). A data point s+ is a positive sample of pred-
icate p in H iff p(s+) = ⊤ must hold to make all rules in H SAT.

Definition 5 (Negative Sample). A data point s− is a negative sample of p
in H iff p(s−) = ⊥ must hold to make all non-fact rules and queries in H SAT.

Definition 6 (Implication Sample). An implication sample s→ of body pred-
icates (p1, ..., pn) and head predicate h in H is an (n + 1)-tuple of data points
(s→1 , · · · , s→n , s→h ) such that p1 (s

→
1 )∧ · · · ∧ pn (s

→
n ) → h (s→h ) must hold to make

all non-fact rules in H SAT.

A lemma can be directly derived from the definitions, signifying that a solu-
tion interpretation should summarize the information within the samples, and
a sample should always evaluate to a certain truth value when making a valid
hypothesis.

11 Also refers to a verification oracle, such as Microsoft Z3.
12 In program verification parlance, it refers to the unsafe check.
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Lemma 1. If H is SAT, for each solution interpretation I∗ of H,
(1) if s+ is a positive sample of p in H, we have I∗ [p] (s+) = ⊤.
(2) if s− is a negative sample of p in H, we have I∗ [p] (s−) = ⊥.
(3) if s→ = (s→1 , · · · , s→n , s→h ) is a implication sample of body predicates

(p1, ..., pn) and head predicate h in H, I∗ [p1] (s
→
1 )∧· · ·∧I∗ [pn] (s

→
n ) → I∗ [h] (s→h ).

For ease of notation, for a sample s and a CHC C, we use s[C] to denote the
clause C after a substitution, which replaces a list of variables with values when
there is no ambiguity of the variable list.

Example 2. In H0 in Example 1, for predicate inv, s+ = (1, 1, 0, 0, 0) is a
positive sample, since s+[C0] : ⊤ → inv(1, 1, 0, 0, 0) and inv(1, 1, 0, 0, 0) = ⊤
must hold to make s+[C0] SAT. s− = (2, 1, 5, 0, 5) is a negative sample, as
s−[C2] : inv(2, 1, 5, 0, 5) → ⊥. s→ = ((1, 1, 0, 0, 0), (1, 1, 1, 1, 1)) is an implica-
tion sample, because s→[C1] : inv(1, 1, 0, 0, 0) → inv(1, 1, 1, 1, 1).

We now formally define safe and unsafe zones, borrowing the terms “safe”
and “unsafe” from program verification.

Definition 7 (Safe and Unsafe Zones). A safe (unsafe) zone of a predicate
p, Sp (Up), is a set of positive (negative) samples of p.

The zones are often symbolically represented as expressions, such as inequalities
and equations. They may include zero sample13, or a finite or infinite number
of samples. Notably, a positive sample can also be viewed as a safe zone, while
a negative sample can be seen as an unsafe zone.

Example 3. In H0 in Example 1, one safe zone for predicate inv(v0, v1, v2, v3, v4)
is Sinv = ¬(v0 ≤ 0) ∧ v1 ≤ v0 ∧ v2 = 0 ∧ v3 = 0 ∧ v4 = 0, since
s+ ∈ Sinv satisfies s+[C0] : ⊤ → inv(s+). One unsafe zone for predicate inv is
Uinv = ¬(v4 ≥ v0v2), since s− ∈ Uinv satisfies s−[C2] : inv(s−) → ⊥.

3.3 Incorporate Zones within Learning Iterations

Chronosymbolic Learning is a framework that incorporates zones within
the learning iterations. A Chronosymbolic Learner proposes the hypothesis Ĩ [pi]
considering currently reasoned safe zones Spi

, unsafe zones Upi
from the reasoner

with the inductive results (partitions) of the learner Lpi .

Several promising candidates of the hypothesis Ĩ [pi] that can be made by
Chronosymbolic Learner14 are listed in Table 1. Note that Equation (6) simply
serves as an example of a Chronosymbolic hypothesis. It can be replaced by any
symbolic classification algorithm taking samples and zones as input, providing
a symbolic hypothesis as output. We have the following lemma:

Lemma 2. Ĩslu ⪰ {Ĩsl, Ĩlu} ⪰ Ĩl, where A ⪰ B denotes that A is a solution
interpretation of the CHC system H whenever B is a solution interpretation.

13 In this case, the zone is ⊥.
14 This is the procedure makeHypothesis() in Algorithm 1.
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Table 1: Several candidates of making hypotheses.

Methods Candidate Hypothesis

BMC-styled Ĩs [pi] = Spi (2)

LinearArbitrary-styled Ĩl [pi] = Lpi (3)

Chronosymbolic w/o safe zones Ĩlu [pi] = Lpi ∧ ¬ Upi (4)

Chronosymbolic w/o unsafe zones Ĩsl [pi] = Spi ∨ Lpi (5)

Chronosymbolic Ĩslu [pi] = Spi ∨ (Lpi ∧ ¬ Upi) (6)

Lemma 2 shows the order of the feasibility of becoming a solution interpre-
tation. We give a proof sketch for Ĩsl ⪰ Ĩl and proofs for others are similar.

Proof. Assume Ĩl [pi] = Lpi
is a solution interpretation of H, and then by Defi-

nition 4, we have for each positive sample s+, Ĩl [pi] (s+) = ⊤, i.e., s+ ∈ Ĩl [pi].
According to Definition 7, the safe zone Spi

is a set of positive samples, and we

have Spi ⊆ Ĩl [pi]. We now have Ĩsl [pi] = Spi ∨ Ĩl [pi] = Ĩl [pi] and Ĩsl [pi] is also
a solution interpretation. Thus, we can conclude Ĩsl ⪰ Ĩl. ⊓⊔

In practice, Equation (6) generally delivers the optimal result among the candi-
dates, as it encapsulates more information summarized by both the learner and
the reasoner15. Nevertheless, this does not apply to every individual instance,
since the introduction of zones might alter the exploration of the state space16.
To address this issue, we can manually apply adequate strategies on each in-
stance, or use a scheduler to alternate those candidate hypotheses over time.
Our experiments will demonstrate the performance improvement achieved by
employing various strategies.

3.4 Overall Algorithm

The overall algorithm is outlined in Algorithm 1, where the solid bullet points
denote mandatory steps and the unfilled bullet points indicate optional steps,
suggesting that they need not be executed in every iteration.

The algorithm takes a CHC system H as input and outputs a solution for
it. Initialization of zones, hypotheses, UNSAT flag, and the dataset occurs in
lines 1-4. The outer while loop, spanning lines 5 to 18, checks if a solution of H
has been found. If not, it initiates a new epoch and continues solving. In line
5, SMTCheck(Ĩ [Ci]) calls the backend SMT solver to check the satisfiability of a

15 Appendix B provides additional theoretical analysis on why Chronosymbolic
Learning performs better from the perspective of the state and solution space.

16 This depends on the algorithms used in the teacher (in our instance, an SMT solver)
to get counterexamples. After incorporating zones, the teacher may also return coun-
terexamples that lead to less progress for the learner.
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Algorithm 1 Chronosymbolic Learning (H)

input: A CHC system H = {C0, · · · , Cn}
1: • Initialize safe and unsafe zones ∀ pi, (Spi ,Upi) ← (⊥,⊥)
2: • Initialize the hypotheses ∀ pi, Ĩpi ← ⊤
3: • Initialize UNSAT flag is unsat ← ⊥
4: • Initialize the dataset D ← ∅
5: while not is unsat and ∃ Ci, not SMTCheck(Ĩ [Ci]) do

6: ◦ Reasoning and UNSAT checking (S, U , is unsat, Ĩ,R) ← reason(H, S, U)
7: ◦ Sample from zones and add to D D ← D + sampling(S, U ,D)
8: for each Ci ∈ H do

9: while not SMTCheck(Ĩ [Ci]) do

10: • Find counterexample(s) c← SMTModel(Ĩ [Ci])
11: • Convert counterexample(s) to samples s← converting(c)

12: • UNSAT checking is unsat, Ĩ,R ← checkUNSAT(D, s)

13: • Add samples to D D ← D + s, if not is unsat

14: • Learn a partition L ← learn(D)
15: • Update the hypothesis Ĩ ← makeHypothesis(S,U ,L)
16: end while

17: end for

18: end while

output: A solution (is unsat, Ĩ,R) for the CHC system H

CHC Ci under current hypothesis interpretation Ĩ. In line 6, the reasoner refines
the zones and checks if the zones overlap (see Section 4.2). Line 7 involves the
sampling procedure described in Section 4.1.

The for loop from lines 8-17 iteratively finds an UNSAT CHC and refines the
hypothesis until it becomes SAT17. In the inner while loop in lines 10-13, we find
one or a batch of counterexamples, convert them into samples, and add them
to the dataset after the UNSAT checking18 passes. SMTModel(Ĩ [Ci]) in line 10
calls the backend SMT solver to return a counterexample that elucidates why
the current hypothesis is invalid. Following dataset updates, in lines 14-15, the
learner induces a new partition. We then update the Chronosymbolic hypothesis
by combining the zonal information and the partition, as described in Section
3.3. The new hypothesis is more likely to be a solution interpretation (if the
CHC system is SAT), as it integrates the newly acquired information gathered
in this iteration19.

17 An alternative design choice is to update the hypothesis only once and move to the
next UNSAT CHC, which achieves better results in some cases.

18 For simplicity, the refutation proof generated when checking UNSAT is also repre-
sented as Ĩ in Algorithm 1.

19 Here we do not consider approximation error in classification or tentative samples
defined later.
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4 Design of Learner and Reasoner

In this section, we provide a simple instance of Chronosymbolic Learning,
utilizing standard procedures as illustrative examples to demonstrate how they
can be integrated into our framework. Implementation details can be found in
Appendix C. Discussion on alternative design choices is provided in Section 7.

4.1 Learner: Data-Driven CHC Solving

The learner module in our framework leverages an induction-based and CEGAR-
inspired [10] CHC solving scheme. It has two sub-modules: the dataset and the
machine learning toolchain. The dataset stores the positive and negative samples
and the corresponding predicates for inductive learning. The machine learning
toolchain (an example introduced in Section 2.2) takes the samples in the dataset
as input and outputs a partition that correctly classifies all these samples.

Converting: From Counterexamples to Samples. The positive and nega-
tive samples in our framework are converted from counterexamples. As in Fig. 2,
the counterexample provided by the teacher is essential in the learning loop, since
it offers the learner information about why the current hypothesis is incorrect
and how to improve it. Here we formally define the term “counterexample”.

Definition 8 (Counterexample). A counterexample c =
(
(sp1 , · · · , spk

), sh
)

for a CHC C and an interpretation I is a set of data points20 such that under
c, I [C′] = ⊥, where C′ is the same constraint as C but without the quantifier.

Example 4. In H0 in Example 1, given that the current hypothesis of predicate
inv(v0, v1, v2, v3, v4) is Ĩ [inv] = v3 ≤ 1, a counterexample for C1 could be c =
(((2, 0, 0, 0, 0)), (2, 0, 1, 2, 0)), as it makes Ĩ[C1] : ⊤ → ⊥.

Counterexamples can be converted into positive, negative, or implication
samples through the converting procedure in Fig. 2 and Algorithm 1. The fol-
lowing converting scheme maps counterexamples into positive, negative, and
implication samples based on the CHC type. Essentially, this approach samples
the CHC system in three directions: forward, backward, and middle-out.

Lemma 3 (Sample Converting). A fact’s counterexample can provide a pos-
itive sample for the head predicate. A linear query’s counterexample can provide
a negative sample for the body predicate. A non-fact rule’s counterexample can
provide an implication sample of the body predicate(s) and the head predicate.

To simplify the problem into a classic binary classification format and enable
off-the-shelf machine learning tools to handle implication samples more effec-
tively, we introduce “tentative sample21”:

20 They can also be extended to zonal representation, with a possible approach de-
scribed by [43].

21 It is extensible to tentative zones to make an IC3-styled reasoner possible.
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Definition 9 (Tentative Sample). A tentative positive (negative) sample s̃+

(s̃−) of predicate p is a data point such that, the learner tentatively deems it to
be a positive (negative) sample, but it may not satisfy Definition 4 (5).

Lemma 4 (Implication Sample Converting). For an implication sample
s→, if the n data points in (s→1 , · · · , s→n ) are all positive samples (or in a safe
zone), then s→h is a positive sample. If the data point s→h is a negative sample
(or in an unsafe zone), and n = 1, the data point s→1 is a negative sample.
Otherwise, the sample can only be converted into tentative positive or negative
samples, whose tentative categories make the logical implication hold.

Empirically, converting all tentative samples into negative tentative samples
is an appropriate design choice. As these samples are not guaranteed positive or
negative, periodic clearing is necessary to avoid keeping the “wrong guess” in a
specific tentative category forever. Following this conversion, only positive and
negative samples remain visible to the learner, enabling natural adaptation with
off-the-shelf machine learning tools for binary classification like DT and SVM.

Sampling: Obtain Data Points from Zones. To find extra data points
and maximize the usage of the zones, we provide an alternative data collection
strategy, i.e., sampling data points from zones. This procedure involves selecting
a sample from a given zone. Typically, it calls the backend SMT solver with
a safe (unsafe) zone as the input constraint. The SMT solver returns positive
(negative) data points within the zone while ensuring the avoidance of duplicates
already present in the dataset.

UNSAT Checking. Two lemmas show when the learner determines a CHC
system as UNSAT. Note that tentative samples are not used in UNSAT checking.

Lemma 5 (Sample-Sample Conflict). If there exists a sample s for p in H
that is both a positive and a negative sample simultaneously, then H is UNSAT.

Proof. According to Lemma 1, if s is both a positive and negative sample, sup-
pose H is SAT with a solution interpretation I∗, we have I∗ [p] (s) = ⊤ and
I∗ [p] (s) = ⊥, which contradict each other. Hence, H is UNSAT. ⊓⊔

Lemma 6 (Sample-Zone Conflict). If there exists a sample s for p in H that
is a positive sample and is in an unsafe zone, or is a negative sample and is in
a safe zone, then H is UNSAT.

Proof. With Definition 7, sample-zone conflict can be reduced to sample-sample
conflict, the case in Lemma 5. ⊓⊔

4.2 Reasoner: Zones Discovery

For the reasoner, we adopt a simple BMC-styled logical reasoning procedure for
inferring safe and unsafe zones in our instance of Chronosymbolic Learning.
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The role of the reasoner is not to deduce a complete hypothesis but to furnish
a “partial solution” in the form of safe and unsafe zones, collaborating well
with the learner. The zones condense information within a bounded number of
transitions. In our tool, the reasoner initializes the zones, expands the zones
through image (or pre-image) computation, and does UNSAT checking.

In each of the subsequent lemmas, all variables utilized in the discussed CHC
are denoted as X . Among them, variables used by the discussed predicate are
denoted as Xµ ⊆ X . The other variables are called free variables, denoted as
Xφ = X \ Xµ ⊆ X .

Initialization of Zones. We provide lemmas about initiating zones.

Lemma 7 (Initial Safe Zones). A fact Cf : ϕf → hf (T ) produces a safe zone
for hf : S0

hf
(T ) = ∃Xφ, ϕf .

Lemma 8 (Initial Unsafe Zones). A linear query Cq : ϕq ∧ pq(T ) → ⊥ pro-
duces an unsafe zone for pq: U0

pq
(T ) = ∃Xφ, ϕq.

Expansion of the Zones. Zones can be expanded in the following ways:

Lemma 9 (Forward Expansion). From given safe zones Sm
pi
, we can expand

them in one forward transition by a non-fact rule Cr : ϕ∧p1(T1)∧· · ·∧pk(Tk) →
h(T ) to get an expanded safe zone Sm+1

h , where Sm+1
h (T ) = ∃Xφ, ϕ ∧ Sm

p1
(T1) ∧

· · · ∧ Sm
pk
(Tk).

Lemma 10 (Backward Expansion). From a given unsafe zone Um
h , we can

expand it in one backward transition by a non-fact linear rule Cr : ϕ ∧ p(T0) →
h(T ) to get an expanded unsafe zone Um+1

p , where Um+1
p (T0) = ∃Xφ, ϕ ∧ Um

h .

In the context of program verification, the forward expansion incorporates
more information about the reached states. The backward expansion expands
the set of states under which the program is deemed unsafe when reached. Note
that the expansion operation can be computationally expensive, and excessive
expansion leads to a heavy burden for the backend SMT solver.

UNSAT Checking. We further discuss when the reasoner determines UNSAT.

Lemma 11 (Zone-Zone Conflict). If there exists a predicate p in H that its
safe zone Sp and unsafe zone Up overlap, i.e., Sp∧Up is SAT, then H is UNSAT.

Proof. According to Definition 7, we sample one data point from the overlap of
zones, and we can then apply Lemma 6 to prove Lemma 11. ⊓⊔
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5 Experiments

5.1 Experimental Settings

Benchmarks. Our benchmarking dataset comprises a collection of widely-used
arithmetic CHC benchmarks from related works [12, 14, 17] and SV-COMP22,
collected by FreqHorn [14]. It is a suite of 288 instances in total, consisting of 235
safe ones and 53 unsafe ones. The instances are lightweight arithmetic CHC sys-
tems, yet many demand non-trivial effort to determine a solution interpretation
due to the arithmetic complexity. Most instances are under linear arithmetic,
while a few necessitate handling non-linear arithmetic. We also discuss results
on CHC-COMP-2223, LIA track. See Appendix D.1 for details.

Hyperparameters. In SVM, the C parameter is set to 1. The upper limit of the
coefficients in the hyperplanes is set to 5. For DT, we use C5.0 as a default option.
For the dataset, the best result we achieved is to use option B in Appendix C.1,
where a = 50, b = 50. For the reasoner, the hyperparameters l1, l2 and l3 in
Appendix C.2 are 700, 500, and 150024 respectively.

Experiment Setup. We impose a timeout of solving a CHC system instance as
360 seconds across all tools. To account for the inherent randomness in the tools,
we repeat three times for each experiment and report the best result25.

5.2 Baselines

State-of-the-art CHC solvers can be classified into three categories: reasoning-
based, synthesis-based, and induction-based solvers (see Section 6). We compare
our method against the representatives of each type as follows:

LinearArbitrary. LinearArbitrary [45] is the state-of-the-art induction-based
solver that learns inductive invariants from counterexample-derived samples us-
ing SVM and DT. We use the default hyperparameters in the paper and code26.

FreqHorn. FreqHorn27 [14] is a representative of synthesis-based solvers, synthe-
sizing invariants using frequency distribution of patterns. It cannot determine
the CHC system as UNSAT, and it resorts to a separate procedure “Freqhorn-
expl” to do that. In the experiment, we adhere to the default settings in [14].

22 http://sv-comp.sosy-lab.org/
23 https://chc-comp.github.io/
24 More information on the configuration, like the scheduler mentioned in Section 3.3, is

shown at https://github.com/Chronosymbolic/Chronosymbolic-Learning/blob/
main/experiment/result_safe_summary.log.

25 We include results showcasing how random seeds affect the performance in Appendix
D.3.

26 https://github.com/GaloisInc/LinearArbitrary-SeaHorn
27 https://github.com/freqhorn/freqhorn
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Spacer and GSpacer. Spacer [26] is a powerful SMT-based CHC-solving engine
serving as the default CHC engine in Microsoft Z328 [11]. The experiment is
conducted under the default settings of Microsoft Z3 4.8.11.0. GSpacer29 [41]
achieves state-of-the-art on many existing CHC benchmarks by extending with
some well-designed global guidance heuristics. To achieve the best result, we
enable all the heuristics, including the subsume, concretize, and conjecture rules.

5.3 Performance Evaluation

Fig. 3: The solved instances for dif-
ferent methods as the running time
increases.

The performance comparison 30 is shown
in Table 2. “Chronosymbolic-single” con-
figuration stands for the best result from
a single run of our solver, where all
instances are tested using a fixed set
of hyperparameters. “Chronosymbolic-
cover” encompasses all solved benchmarks
achieved through 13 runs31 using different
strategies and hyperparameters, demon-
strating the potential capability of our
framework when selecting an adequate
configuration for each instance. Timing
information for this setting is not included
because the time to solve a certain bench-
mark varies among different runs. Fig. 3 shows the solved instances for compared
methods as the running time increases, and Fig. 4 shows the runtime comparison
per instance.

Fig. 4: Running time comparison of Chronosymbolic Learning and baselines,
where the timeout (TO) is 360 seconds. The points below the diagonal indicate
instances on which Chronosymbolic-single outperforms baselines. Here, we only
plot non-trivial instances (i.e., solving time takes ≥ 1 second for both solvers).

28 https://github.com/Z3Prover/z3
29 https://github.com/hgvk94/z3/commits/ggbranch
30 For detailed timing of each instance, see https://github.com/Chronosymbolic/

Chronosymbolic-Learning/blob/main/experiment/comparison.xlsx
31 The details are included in Appendix D.2.
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Table 2: Performance evaluation. “#total” stands for the total number of solved
instances and “percentage” for the percentage of solved ones among all 288 in-
stances, “#safe” and “#unsafe” for solved ones among 235 safe instances and
53 unsafe instances respectively. For timing, “avg-time” is the average time con-
sumed on each instance (including timeout or crashed ones), and “avg-time-
solved” is the average time consumed on each solved instance.

Method #total percentage #safe #unsafe avg-time (s) avg-time-solved (s)

LinearArbitrary 187 64.93% 148 39 135.0 13.48

FreqHorn 191 66.32% 191 0 129.1 11.80

FreqHorn-expl 50 17.36% 0 50 299.5 13.57

Spacer 184 63.89% 132 52 132.8 15.30

GSpacer 220 76.39% 174 46 83.50 7.83

Chronosymbolic-single 237 82.29% 189 48 68.33 7.51

Chronosymbolic-cover 252 87.50% 204 48 - -

Our tool, even in the Chronosymbolic-single setting, solves 17 more instances
than the best competing solver, GSpacer, and generally outperforms other solvers
in terms of speed, even though it is implemented in Python. This result shows
that our tool performs considerably better even without careful tuning for each
CHC instance. In the Chronosymbolic-cover setting, our approach shows signif-
icant improvements, emphasizing the need for tailored strategies for different
instances. Among other approaches, GSpacer performs the best on solved in-
stances and time consumed, as reported in prior literature. Nevertheless, Spacer,
GSpacer, and LinearArbitrary struggle with most instances involving non-linear
arithmetic. FreqHorn can solve some of them, but fails in all unsafe instances
without resorting to another procedure “expl”. Our approach can also handle
limited non-linearity because our reasoner can induce non-linear zones.

From Fig. 3, we note that Chronosymbolic-single outperforms FreqHorn and
LinearArbitrary under any timeout within 360 seconds, showing the enhanced
efficiency of our method. It is also expected that Spacer and GSpacer perform the
best under an extremely short time limit as they do not involve time-consuming
inductive learning.

Table 3: Evaluation on CHC-COMP-
2022-LIA. “#total” and “percentage”
stand for the total number and the
percentage of solved instances among
499 instances respectively.

Method #total percentage

LinearArbitrary 156 31.26%

FreqHorn 123 24.65%

Spacer 261 52.30%

GSpacer 318 63.73%

Chronosymbolic-single 197 39.48%

For CHC-COMP, most benchmarks
represent large transition systems with a
substantial number of Boolean variables.
Reasoning-based approaches inherently
suit these benchmarks better, and un-
surprisingly, invoking the machine learn-
ing toolchain in each iteration is an in-
efficient design choice. An experiment
shows that by filtering out benchmarks
in CHC-COMP-22-LIA with excessively
large sizes (e.g., exceeding 100 rules or 200 variables), our results are on par with
the state-of-the-art (Chronosymbolic-cover 129/208 vs. GSpacer 130/208).
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5.4 Ablation Study

We further study the effectiveness of the critical parts of our framework: the
learner and the reasoner. For the reasoner, we compare the result when safe
zones are not provided, when unsafe zones are not provided, and when neither
are provided. Additionally, we assess the performance when entirely removing the
learner and running our tool solely with the reasoner. Throughout this ablation
study, all other settings remain consistent with Chronosymbolic-single.

Table 4: Different configurations of Chronosymbolic Learning.
Configuration #total percentage #safe #unsafe avg-time (s) avg-time-solved (s)

without safe zones 228 79.17% 183 45 78.56 9.11

without unsafe zones 218 75.69% 173 45 94.75 12.87

without both zones 211 73.26% 166 45 93.84 10.09

without learner 131 45.49% 96 35 196.3 0.16

parallel 216 75.00% 180 36 - -

Chronosymbolic-single 237 82.29% 189 48 68.33 7.51

From Table 4, as expected, Chronosymbolic-single comprehensively outper-
forms all other configurations, which shows that each component of our frame-
work is indispensable. It is also clear that each zone provides useful information
to the hypothesis, making the result of Chronosymbolic without both zones worse
than without safe and unsafe zones. As discussed in Section 4.2 and Appendix
C.2, our lightweight reasoner is intended to aid the learner. Thus, not utilizing a
learner yields the poorest result, but at a faster computation speed. The result
also shows that our learner32 performs much better than LinearArbitrary, as we
have a more comprehensive converting and sampling scheme.

Another experiment in Table 4, “parallel”, reveals that if we run our learner
and reasoner individually and simultaneously for 360 seconds, they only solve
a total of 180 safe and 36 unsafe instances. This number is significantly lower
than what our proposed method achieves, which underscores the mutual benefit
of the reasoner and learner in Chronosymbolic Learning.

6 Related Work

CHC solving has garnered extensive research, offering numerous artifacts for
applications like software model checking, verification, and safe inductive in-
variant generation. Modern CHC solvers primarily rely on three categories of
techniques33. 1) Symbolic Reasoning. Solvers in this category [4, 9, 23, 26, 29,
41, 42] maximize the power of logical reasoning and utilize a series of heuris-
tics to accelerate the reasoning engine. 2) Synthesis. Methods in this cate-
gory [12, 14, 32, 35, 39, 44] typically reduce the CHC solving problem into an
invariant synthesis problem, which aims to construct an inductive invariant un-
der the semantic and syntactic constraints. 3) Induction. Instead of explicitly

32 “Without both zones” indicates that the reasoner does not participate.
33 See Appendix A.1 for details.
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constructing the interpretation of unknown predicates, induction-based CHC
solvers [7, 10, 16, 17, 31, 36, 37, 43, 45] directly learn such an interpretation by
induction learning from data.

7 Discussion and Future Work

Discussion on the alternative design choices for learner and reasoner. Many
existing methods can potentially be integrated into our modular framework. For
the learner in Chronosymbolic Learning, ICE framework [16], ICE-DT [17]
Interval-DT [43] which have special designs for implication samples can also be
valid choices. Additionally, symbolic (binary) classification algorithms can be
a suitable choice. For the reasoner, model-based projection (MBP) [25] can be
integrated straightforwardly, while IC3 [4], PDR [42], Spacer [26], and GSpacer
[41] require more careful design (e.g., supporting tentative zones) because of the
introduction of over-approximation zones. If such tentative zones are introduced,
a wider range of methods that generalize data points to zones, e.g., symbolic
regression [6, 27] methods and convex hull algorithms [1] can be applied.

Future work. Despite the promising result, there are several avenues for future
work. Firstly, our learner primarily generates linear expressions (and some sim-
ple non-linear operators like mod), necessitating adaptation for broader abstract
domains. It is also crucial to develop and integrate machine learning algorithms
that are specifically tailored for this problem within the framework (e.g., how
we can obtain a good partition or classifier with the existence of samples and
zones). Second, our strategy for identifying safe and unsafe zones is primitive,
prompting the exploration of advanced logical reasoning algorithms like IC3-style
approaches, where zone generalization and summarization should be carefully
balanced. Thirdly, we acknowledge the influence of different learning strategies
on benchmark solving (as Chronosymbolic-cover outperforms Chronosymbolic-
single by a large margin) and intend to conduct comprehensive analyses for
automated strategy selection. Lastly, currently, our tool only uses elementary
algorithms for zone reasoning, which is not optimized for large CHC systems
(e.g., many instances in CHC-COMP). Additionally, our algorithmic support
for non-linear CHCs is also limited. We plan to dedicate efforts to engineering
improvements and explore ways to enhance efficiency in downstream machine
learning procedures, particularly when handling numerous Boolean variables.

8 Conclusion

In this work, we propose Chronosymbolic Learning, a framework that can
synergize reasoning-based techniques with data-driven CHC solving in a recip-
rocal manner. We also provide a simple yet effective instance of Chronosym-
bolic Learning to demonstrate its functionality and showcase its potential.
Our experiments, conducted on 288 commonly used arithmetic CHC bench-
marks, reveal that our tool outperforms several state-of-the-art CHC solvers,
encompassing reasoning-based, synthesis-based, and induction-based methods.
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Appendix

A Extended Preliminary

A.1 Extended Related Work

Modern CHC solvers primarily rely on the following three categories of tech-
niques.

Symbolic Reasoning. Solvers in this category maximize the power of logical rea-
soning and utilize a series of heuristics to accelerate the reasoning engine. The
classic methods are mostly SAT-based. Bounded Model Checking (BMC) [9] en-
codes the initial states, transitions, and bad states into logical variables, and
unfolds k transitions to form a logical formula. However, it only provides a
bounded proof that can only show the correctness within a certain number of
transitions. Craig Interpolation (CI) [29] tries to find an “interpolant” that serves
as an over-approximating summary of reachable states. If such an interpolant
is a fixed-point, then an unbounded proof (inductive invariant) is found. EL-
DARICA [23] is an instance of maximizing the power of CI, as it constructs an
abstract reachability graph that would witness the satisfiability of CHCs through
interpolation. IC3 [4] and PDR [42] greatly improve the performance of finding
the unbounded proof by incrementally organized SAT-solving. It keeps an over-
approximation of unsafe states by recursively blocking them and generalizing the
blocking lemmas. Modern solvers embrace the power of SMT-solving to make
them extensible to a broader context. Spacer [26] is a representative work com-
bining SMT-solving techniques with IC3/PDR-styled unbounded model check-
ing, which is also the current default CHC solver in Microsoft Z3 [11]. It keeps
an under-approximation of currently reached states and an over-approximation
of unsafe states. GSpacer [41] adds global guidance heuristics to enhance Spacer.

Synthesis. Methods in this category typically reduce the CHC solving problem
into an invariant synthesis problem, which aims to construct an inductive in-
variant under the semantic and syntactic constraints. Many of such methods
are heavily inspired by the concept of Counterexample Guided Inductive Syn-
thesis (CEGIS), where the synthesizer is forced to produce proposals consistent
with the counterexamples collected so far. Code2Inv [38,39] uses a graph neural
network to encode the program snippet, and applies reinforcement learning to
construct the inductive invariant. FreqHorn [14] first generates a grammar that
is coherent to the program and a distribution over symbols, and then synthesizes
the invariant using the distribution. InvGen [12] combines data-driven Boolean
learning and synthesis-based feature learning. G-CLN [44] uses a template-based
differentiable method to generate loop invariants from program traces. It can
handle some non-linear benchmarks, but manual hyperparameter tuning for each
instance is required, which hampers its generality. In this category, solvers strug-
gle to scale up to CHCs where multiple invariants exist.
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Induction. Instead of explicitly constructing the interpretation of unknown pred-
icates, induction-based CHC solvers directly learn such an interpretation by
induction. The ICE-learning framework [16] provides a convergent and robust
learning paradigm. HoIce [7] extends the ICE framework to non-linear CHCs.
ICE-DT [17] introduces a DT algorithm that adapts to a dataset with positive,
negative, and implication samples. Interval ICE-DT [43] generalizes samples
generated from counterexamples based on the UNSAT core technique to closed
intervals, which enhances their expressiveness. LinearArbitrary [45] is the most
relevant work to ours. It collects samples by checking and unwinding CHCs,
and learns inductive invariants from them using SVM and DT [36] within the
CEGAR-like [10] learning iterations. But this approach, due to the “black-box”
nature, is completely agnostic to the CHC system itself, and much immediate
prior knowledge needs to be relearned by the machine learning toolchain.

A.2 CHCs and Program Safety Verification

An essential application of CHCs is to act as a general format for program safety
verification. This generality extends to any imperative programming language
and any safety constraints specified in First-Order Logic (FOL). To validate a
program, we often use a proof system that generates logical formulas called veri-
fication conditions (VCs). Validating VCs implies the correctness of the program.
It is also common for VCs to include auxiliary predicates, such as inductive in-
variants. Hence, it is natural that the VCs can be in CHC format, and checking
the correctness of the program can be converted to checking the satisfiability of
the CHCs.

The conversion process from program verification to CHC solving is out-
lined as follows. Consider the program to be verified as a Control-Flow Graph
(CFG) [2]. A Basic Blocks (BBs) in the program is a vertex of the CFG, equiv-
alent to a predicate in the CHC system. Such predicates can be seen as the
summary of the BBs, which corresponds to “inductive invariants” in program
verification parlance. The edges of the CFG describe the transitions between the
BBs. CHCs can encode those transitional relations, in the direction that starts
from the BBs of body predicates to the BB of the head predicate. Then, the so-
lution of the result CHC system corresponds to the correctness of the program.
Such conversion can be fully automated, and numerous tools are developed for
different programming languages, such as SeaHorn [21] and JayHorn [24].

Table 5 lists a mapping of program verification concepts to CHC solving
concepts.

A.3 Support Vector Machine

Support Vector Machines (SVMs) are widely used supervised learning models,
especially in small-scale classification problems. In typical SVMs, the quality of a
candidate classifier (also called a hyperplane) is measured by the margin, defined
as its distance from the closest data points, which is often called the support
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Table 5: Mapping of program verification concepts to CHC solving concepts.

Program Verification Concept CHC Solving Concept

Verification Conditions (VCs) CHC system H
Initial program state Fact Cf
Transition Rule Cr
Assertion

Unsafe condition
Query Cq

Inductive invariant

Loop invariant
Solution Interpretation I∗ [p] to predicate p

Counterexample trace Refutation proof R
Reachable program states Positive samples s+

Unsafe program states Negative samples s−

vectors in a vector space. In our work, we only discuss the case that the data
are linearly separable, and linear SVMs can be adopted.

In practice, to prevent over-fitting, it is effective to add some slack variables
to make the margin “soft”. The optimizing target of such “soft-margin” linear
SVM is as follows:

min
w,ξi

1

2
wTw + C

n∑
i=1

ξi,

subject to yi
(
wTxi + b

)
≥ 1− ξi, ξi ≥ 0,∀i = 1, . . . , n,

(7)

where wTxi + b = 0 is the hyperplane, ξi is the i-th slack variable, C is a
hyperparameter that controls the penalty of the error terms. Larger C leads to
a larger penalty for wrongly classified samples.

A.4 Decision Tree

Decision Tree (DT) is a classic machine learning tool. It provides an explicit,
interpretable procedure for classification problems.

The DT algorithms in our tool make a decision based on the information gain.
We denote the positive and negative samples as S+ and S−, and all samples as
S = S+ ∪ S−. Then we define the Shannon Entropy ϵ(S):

ϵ(S) = −|S+|
|S|

log2
|S+|
|S|

− |S−|
|S|

log2
|S−|
|S|

, (8)

and the information gain γ with respect to an attribute f(x) ≤ c:
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γ(S, f(x) ≤ c) = ϵ(S)−

(∣∣Sf(x)≤c

∣∣ ϵ(Sf(x)≤c)

|S|
+∣∣S¬f(x)≤c

∣∣ ϵ(S¬f(x)≤c)

|S|

)
,

(9)

where Sf(x)≤c and S¬f(x)≤c are samples satisfying f(x) ≤ c and samples
that do not. The DT prefers to select attributes with higher information gain,
i.e., the partition result that has a dominant number of samples in one certain
category.

After a DT is learned, by recursively traversing the DT from its root to
leaves, we can get a symbolic expression Lp by taking “And (∧)” on attributes
along a certain path to ⊤ and “Or (∨)” between such paths.

B Solution Space Analysis

In this section, we discuss what properties a solution interpretation for predicate
p of a given CHC system H should hold. We use US to denote the universe set
of any safe zones and positive samples, i.e., ∀Sp,Sp ⊆ US and ∀s+p , s+p ∈ US . UU
is defined similarly as the universe set of any unsafe zones and negative samples.

Lemma 12 (Disjoint US and UU). For any SAT H, US and UU are disjoint.

Proof. Suppose in a SAT CHC system H, US and UU is not disjoint, i.e., there
is a sample s, s ∈ US and s ∈ UU . According to the definition of US and UU , s
is both a positive and a negative sample. According to Lemma 5, H is UNSAT,
which contradicts the assumption. Therefore, US and UU is disjoint in any SAT
CHC system H. ⊓⊔

Given Lemma 12, the state (i.e., sample) space can be divided into three
parts shown in Fig. 5: US encapsulating positive samples and safe zones, UU
encompassing negative samples and unsafe zones, and an “irrelevant zone” UI
comprising samples that are neither positive nor negative.

Lemma 13. A solution interpretation I∗ [p] cannot intersect with US and UU .

Proof. Suppose I∗ [p] intersects with US , i.e., ∃s+p , I∗ [p] (s+p ) = ⊥. This contra-
dicts with Definition 4. Suppose I∗ [p] intersects with UU , i.e., ∃s−p , I∗ [p] (s−p ) =
⊤. This contradicts with Definition 5. Thus, I∗ [p] cannot intersect with both
US and UU . ⊓⊔

We additionally answer the question of what properties a solution interpre-
tation of H should hold:

Lemma 14 (Solution Space). I is a solution interpretation of H iff:
1) ∀p, I [p] does not intersect with US,p and UU,p;
2) For any (n+1)-ary implication sample (s→1 , · · · , s→n , s→h ) of body predicates

(p1, ..., pn) and head predicate h, I [p1] (s
→
1 )∧· · ·∧I [pn] (s

→
n ) → I [h] (s→h ) = ⊤.
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Maximum Solution 
Interpretation

Minimum Solution 
Interpretation

Data points in it are 
neither positive nor 
negative samples

Any safe zones / positive 
samples are included

Any unsafe zones / negative 
samples are included

Solution Interpretation

Universe of 
Safe Zones

( US )

Irrelevant 
Zone
( UI )

Universe of 
Unsafe Zones

( UU )

Fig. 5: An illustration of the solution space of a CHC system in the state space.
The maximum and minimum solution interpretations represent the strongest and
weakest solution interpretations respectively. [19] shows the existence of them.

The Advantage of Chronosymbolic Learning. Lemma 13 and 14 suggest
the importance of finding the coverage of US and UU efficiently. If US or UU
contains finite samples, in the worst-case scenario, traversing all states of either
US or UU is necessary. Symbolic zonal information, as shown in Definition 4
and 5, enables efficient computational traversal of a set of states, as learning is
not required. Even when US and UU contain infinite samples, zones still offer
valuable information by efficiently summarizing the categories of a set of states.
This enables the learner to focus on other segments of the state space that may
pose challenges for the reasoner to explore.

C Implementation Details

Our artifact34 implementing Chronosymbolic Learning is built in Python
3.10 and utilizes Microsoft Z3 [11] version 4.8.11.0 as the backend SMT solver.
Our tool supports the SMT-LIB2 format and the Datalog (rule-query) format.
It is compatible with CHC systems containing single or multiple predicates with
arithmetic and Boolean variables.

C.1 Learner: Data-Driven CHC Solving

The learner module in our tool leverages an induction-based and CEGAR-
inspired [10] CHC solving scheme. It has two sub-modules: the dataset and
the machine learning toolchain (composed of DT and SVM, as shown in Sec-
tion 2.2). The dataset stores the positive and negative samples converted from
counterexamples35 and the corresponding predicates for inductive learning. The
machine learning toolchain takes the samples in the dataset as input and outputs
a partition that can correctly classify all these samples.

34 The artifacts are available on this link: https://github.com/Chronosymbolic/

Chronosymbolic-Learning
35 See Section 4.1 for details.
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SVM. We apply LIBSVM [8] as our default SVM engine. Positive and negative
samples undergo iterative SVM classification until all samples are correctly cat-
egorized [45]. The resulting hyperplanes are subsequently utilized as attributes
within the DT module. Boolean variables are skipped during SVM learning.

DT. We offer APIs for C5.036 [36] and CART (Classification and Regression
Trees) [5] implemented in scikit-learn [34]. In addition to the attributes induced
by SVMs, we incorporate several default attributes into DT, making the tool
more efficient. These attributes encompass common patterns in inductive in-
variants such as the octagon abstract domain [30] (±v1 ± v2 ≥ c), as well as
extensions for specific non-linear operators like mod and div. We also implement
an auto-find feature capable of finding the “mod k” patterns in the CHC system
automatically. It resembles the idea of some synthesis-based methods, which take
often-appearing patterns in the CHC system as a part of the grammar [14]. We
also provide a visualization tool for analyzing how DTs change through time.

Dataset. We provide two options for implementation.

A. Collecting all data samples until the current iteration and forwarding them
all to the learner. While this approach guarantees accuracy and progress, it
can become increasingly burdensome for the learner to induce a partition.

B. Maintaining recent a positive and b negative samples in a queue. This en-
hances learner efficiency but sacrifices some precision and lacks a progress
guarantee. Empirically, both approaches yield nearly the same global per-
formance.

If tentative samples are permitted, they are stored in a distinct dataset, which
can also accommodate options A and B. These tentative samples are regularly
cleared to maintain (approximate) monotonic improvement. In our toolkit, we
exclusively employ tentative negative samples and adhere to the methodology
outlined in [45] to clear these tentative negative samples whenever a positive
sample is acquired, ensuring a staged monotonic improvement at the occurrence
of positive samples.

C.2 Reasoner: Zones Discovery

Our lightweight reasoner implementation aims to enhance hypothesis generation
by assisting the learner. It prioritizes simplicity in zones to minimize the com-
putational burden on the backend SMT solver, ensuring smooth execution of
the guess-and-check procedure. To maintain this simplicity, our implementation
follows these principles: 1) Initialization and Expansion: The reasoner conducts
initialization and expansion primarily at the beginning of the process. 2) Com-
plexity Control Criteria: During zone expansion, specific criteria are enforced to
prevent zones from becoming excessively complex: Firstly, CHCs with body con-
straints exceeding a length37 of l1 or with free variables exceeding l2 are skipped.

36 https://www.rulequest.com/see5-info.html
37 The “length” refers to the size of the internal representation of Z3.
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Secondly, a zone reaching a length exceeding l3 triggers the termination of ex-
pansion for that zone. Lastly, a zone introducing ineliminable quantifiers also
leads to the termination of the expansion procedure for that zone.

C.3 Preprocessing of CHC Systems

To handle CHC systems in various styles and formats, we preprocess the input
CHC system in these aspects:

1. Rewrite the terms in predicates to ensure that the predicates are only pa-
rameterized by distinctive variables (such as p(v0, v1, v2));

2. Clear and propagate predicates that are ⊤ or ⊥;
3. Simplify the inner structure of each CHC if possible.

D Experimental Details

We provide more details in Section 5 as follows. The detailed running logs and
timing statistics are available in our artifact38.

D.1 Statistics about the benchmarks

Most benchmarks have less than 10 rules, 5 predicates, and 10 variables for
each predicate. On average, on all benchmarks under the Chronosymbolic-single
setting, we need 1.64 rounds of outer while loop in Alg. 1, line 5, and 243.2
iterations of for loop at line 8, so 243.2 counterexamples are generated on average.

For quantifier elimination (QE), empirically, in most cases, we can do QE
when expanding the zones (more than 90% of cases). However, as described
before, considering not slowing down the backend solver, the expansion stops
when we cannot do QE.

For non-linear arithmetic benchmarks, we have 19 in total. Aside from them,
GSpacer achieves 219/269, and Chronosymbolic-cover achieves 237/269.

In the experiment, 3 exclusive instances are solved in the Chronosymbolic-
single setting (compared with our baselines)39.

D.2 Detailed Settings for Chronosymbolic-cover

The Chronosymbolic-cover setting mainly covers the following experiment:

1. Different expansion strategy of zones (e.g., do not expand at all, small or
large limit of size, etc.);

38 https://github.com/Chronosymbolic/Chronosymbolic-Learning/tree/main/

experiment
39 Exemplar cases are shown at: https://github.com/Chronosymbolic/

Chronosymbolic-Learning/tree/main/examples
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2. Different dataset configuration (e.g., whether to enable queue mode on the
positive and negative dataset, the length of the queue, how we deal with
tentative data samples);

3. Different strategies for scheduling the candidate hypothesis described in Sec-
tion 1;

4. Different DT settings in Appendix C.1.

D.3 Results on Using Different Random Seeds in DT

We further examine how randomness affects our system. In this section, we
use six different random seeds (1, 13, 137, 400, 1371, 13711) in CART for each
experiment. We apply dataset option B) in Section 4.2 for simplicity in analysis.
Other configurations remain the same as “Chronosymbolic-single” as described
in Section 5.1. As an example, we only consider the safe instances in our test
suite.

Table 6: Performance evaluation across different random seeds. “#solved” and
“percentage” stands for solved instances among 235 safe instances. “avg-time” is
the average time consumed on each instance (including timeout or crashed ones).
“And” stands for the instances solved under all random seed configurations,
while “Or” for the instances solved under at least one configuration.

random seed #total percentage avg-time (s)

1 183 77.87% 89.04
13 183 77.87% 89.89
137 177 75.32% 94.07
400 186 79.15% 83.19
1371 188 80.00% 86.52
13711 183 77.87% 84.87

And 175 74.47% -
Or 195 82.98% -

As shown in Table 6, the result that our approach consistently solves a sub-
stantial number of instances across various random seed configurations demon-
strates the robustness of our approach. Different random seeds yield varying
partition results for the same dataset, leading to diverse hypotheses exploring
distinct directions within the solution space. The “Or” result highlights how
different seed configurations can collectively cover a broader range of instances.

D.4 Running Time Analysis

We provide per-instance time partitioning analysis in our tool. The running time
of Z3 (teacher and reasoner), SVM, DT, and reasoner for each instance can be
examined through the log 40. On our main dataset in the “Chronosymbolic-

40 Check our example:
https://github.com/Chronosymbolic/Chronosymbolic-Learning/blob/main/

experiment/result_safe_summary.log
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single” setting, the average running time for SVM, DT, Z3 are 26.68s, 4.74s,
14.58s, and 1.29s respectively.


