Chronosymbolic Learning

Ziyan "Ray" Luo¹², Xujie Si¹³ ¹ Mila, ² McGill University, ³ University of Toronto

BACKGROUND

- Program verification => CHC solving (a fragment of FOL)
- Black-box data-driven methods are sample-inefficient and agnostic to the symbolic information within the CHCs
- White-box symbolic approaches struggles to identify essential patterns from data samples

CONTRIBUTION

- Design a modular framework, Chronosymbolic Learning, to efficiently leverage symbolic information (zones, representing a set of data samples) and data samples
- Propose a minimal instance (SVM+DT+BMC), exemplifying how components interact in our framework (artifact available)
- A new perspective of unifying approaches (see paper for more)
- Promising experimental result though simplistic instantiation

Overview of different approaches through the lens of learning from samples and zones.

"<u>CHronosymboli</u>C": Constrained Horn Clause Efficient CHC solver = Symbolic Reasoner + Data-driven Learner Synchronously Samples Zones

Chrone Chrone

MAIN RESULT

- 288 arithmetic instances collected by FreqHorn
- Timeout = 360s
- Chronosymbolic-single: one config for all instances
- Chronosymbolic-cover: for each instance, best result over 13 configs
- parallel: learner and reasoner running individually and b f = c O (O)simult

Method

- LinearA
- FreqHor
- FreqHor Spacer
- GSpace
- Chrone
- Chrone
- -----Config withou withou withou withou paralle Chron

INSTANCES

ds	Candidate Hypothesis		
styled	$\tilde{\mathcal{I}}_s\left[p_i\right] = \mathcal{S}_{p_i}$		
Arbitrary-styled	$\tilde{\mathcal{I}}_l\left[p_i\right] = \mathcal{L}_{p_i}$		
osymbolic w/o safe zones	$\left \tilde{\mathcal{I}}_{lu} \left[p_i \right] = \mathcal{L}_{p_i} \land \neg \mathcal{U}_{p_i} \right $		
osymbolic w/o unsafe zones	$\tilde{\mathcal{I}}_{sl}\left[p_{i}\right] = \mathcal{S}_{p_{i}} \vee \mathcal{L}_{p_{i}}$		
osymbolic	$\left \tilde{\mathcal{I}}_{slu}\left[p_{i}\right]=\mathcal{S}_{p_{i}}\vee\left(\mathcal{L}_{p_{i}}\wedge\neg\mathcal{U}_{p_{i}}\right)\right.$		

SOLUTION SPACE

taneously	TOr	3605)

1	#total	percentage	#safe	#unsafe	
Arbitrary	187	64.93%	148	39	
rn	191	66.32%	191	0	
rn-expl	50	17.36%	0	50	
	184	63.89%	132	52	
er	220	76.39%	174	46	
osymbolic-single	237	82.29%	189	48	-
osymbolic-cover	252	87.50%	204	48	

uration	#total	percentage	#safe	#unsafe
it safe zones	228	79.17%	183	45
it unsafe zones	218	75.69%	173	45
it both zones	211	73.26%	166	45
it learner	131	45.49%	96	35
el	216	75.00%	180	36
nosymbolic-single	237	82.29%	189	48