Understanding Metric Learning

A Large-Scale Study on Distracting RL Environments

Ziyan "Ray" Luo 🕸 🐯

Tianwei Ni :: ##

Pierre-Luc Bacon

WHAT & WHY Metric Learning

- Metric learning ≈ learning distances between states by how they behave (rewards 🙀 + transitions 🎁)

- Principled way for state abstraction: Pull behaviorally similar states together, PUSD dissimilar ones apart
- Embed a target distance isometrically to repr. space

$$d_{\mathcal{X}}(x_1, x_2) = d_{\Psi}(\phi(x_1), \phi(x_2))$$

- Bisimulation metric (BSM) is the canonical target distance

$$d^{\sim}(x_1, x_2) = \max_{a \in A} \Big(c_R |\mathcal{R}(x_1, a) - \mathcal{R}(x_2, a)| + c_T \mathcal{W}_1(d^{\sim}) \big(\mathcal{P}(\cdot | x_1, a), \mathcal{P}(\cdot | x_2, a) \big) \Big)$$

- Inspired by BSM, scalable variants:

$$d^{\pi}(x_{1}, x_{2}) = \underbrace{c_{R}|\mathcal{R}^{\pi}(x_{1}) - \mathcal{R}^{\pi}(x_{2})|}_{d_{R}} + \underbrace{c_{T} \mathcal{W}_{1}(d^{\pi})(\mathcal{P}^{\pi}(x_{1}), \mathcal{P}^{\pi}(x_{2}))}_{d_{T}}. \quad \text{Policy-dependent BSM}$$

$$u^{\pi}(x_{1}, x_{2}) = c_{R}|\mathcal{R}^{\pi}(x_{1}) - \mathcal{R}^{\pi}(x_{2})| + c_{T} \mathbb{E}_{x'_{1} \sim \mathcal{P}^{\pi}(\cdot|x_{1})}[u^{\pi}(x'_{1}, x'_{2})]. \quad \text{MICo distance}$$

- Approximate isometry through a regression loss

$$J_M(\phi) = \ell\left(d_{\Psi}(\phi(x_1),\phi(x_2)) - \hat{d}_{\mathcal{X}}(x_1,x_2)\right)$$
 $\ell: \mathsf{MSE/Huber/...}$

- Important design choices

Objectives:

Metric Loss

- Reward Prediction (RP)
- Self-prediction (ZP)
- $J_{\rm ZP}(\phi,\nu) = -\log P_{\nu}(\bar{\phi}(x') \mid \phi(x), a)$ $J_M(\phi) = \ell \left(d_{\Psi}(\phi(x_1), \phi(x_2)) - \hat{d}_{\mathcal{X}}(x_1, x_2) \right)$

 $J_{\text{RP}}(\phi,\kappa) = (R_{\kappa}(\phi(x),a) - r)^2$

Normalizing Representations

LayerNorm MaxNorm

"How Well Are Metrics Learned in a Learned in Deep RL?"

Positive examples x+

Github

Extensive Noise Sources

- IID Gaussian (append) IID Gaussian with random projection State-based
- Pixel-based - Video background (gray / colored)
 - IID Gaussian (per-pixel)

Metric Learning Alg.

Quantifying Denoising

Actor loss

Isolated Metric Evaluation

Isolate Metrics Effect

- A baseline agent + An <u>isolated encoder</u>
- optimized by only metric-related loss
- only evaluate its DF
- Disentangle other losses from the encoder
- Same π (from SAC) for different metric losses

Unified Perspective

Method	$\hat{d_R}$	$\hat{d_T}$	d_{Ψ}	Metric Loss	Target Trick	Other Losses	Transition Model	Normali -zation
SAC (Haarnoja et al., 2018)	:- <u></u> :			-		<u></u>	* 	
DeepMDP (Gelada et al., 2019)			_		_	RP + ZP	Probabilistic	
DBC (Zhang et al., 2020)	Huber	W2 closed-form	Huber	MSE	_	RP + ZP	Probabilistic	
DBC-normed (Kemertas & Aumentado-Armstrong, 2021)	Huber	W2 closed-form	Huber	MSE	_	RP + ZP	Deterministic	MaxNorm
MICo (Castro et al., 2021)	Abs.	Sample-based	Angular	Huber	√		· ——	
RAP (Chen & Pan, 2022)	RAP	W ₂ closed-form	Angular	Huber	_	RP + ZP	Probabilistic	
SimSR (Zang et al., 2022)	Abs.	Sample-based	Cosine	Huber		ZP	Prob. ensemble	L2Norm

BENCHMARKING

14 DMC tasks aggregated, + LayerNorm

RAP generally perform the best (but not in state-based tasks!) Grayscale video setting: not much harder than clean setting!

CASE STUDY

Red: R' > R Blue: R' < R Most methods benefit from LayerNorm in the repr. space DeepMDP (RP+ZP) + LayerNorm ≈ SimSR

ZP is essential for the success of SimSR

RP does not matter too much in our tasks

ISOLATED EVALUATION

TAKEAWAYS

- ★ Evaluate simple, controlled settings first to build foundational insight
- ★ Support metric-learning claims via direct measure
- **★ Self-prediction (ZP) loss & Normalization** truly matters
- ★ Examine when metric learning offers unique benefit