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Motivation: State Abstraction in RL

Scaling RL to high-dimensional, distraction-rich domains remains 
challenging
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What is a Good State Abstraction in RL?
- Denoise: Capturing task-relevant information

- Benefits: computation efficiency, sample efficiency, 

generalization/robustness, better value estimation, …

- But how to achieve this abstraction?
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Behavioral metric: a distance that quantifies state 
similarity based on differences in R & P

- Behaviorally similar states have closer distances



Behavioral Metric (distance) & Denoising Representation
Behaviorally similar states should have close representations, vice versa                        
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Isometric Embedding: connect and unify prior work
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Use an auxiliary (regression) metric loss     to approximate 

Target Metric       :  a desired behavioral distance between states



Target Metric     :  -  Examples, as design choices
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Design choices in Metric Learning Objectives

- Self-prediction (ZP) loss

- Reward prediction (RP) loss

- Metric loss function     (regression loss, e.g., MSE/Huber)
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Design choices in Normalizing Representations

- L2 normalization

- MaxNorm: adjust the diameter of the vector so that dΨ is bounded theoretically

- LayerNorm (as default design choice in CNNs in prior work)

(from SimSR)

(from DBC-normed)
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Two baselines, five metric learning methods
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But… 

how does the metrics help 
denoising?

Promising returns are reported.
But are they driven by better denoising through metric learning?



Study Design on 
Denoising

We think critically about how to move this area forward.

❏ Task (Noise) Diversity

❏ Generalization Evaluation

❏ Evaluation Measure

❏ Loss Attribution
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State-based environments:

- IID Gaussian Noise (dims and stds can be varied)
- IID Gaussian Noise with Random Projection

Noise Settings

One run, one A sampled
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Noise Settings
Pixel-based (backgrounds can be grayscale or colored):

- IID Gaussian Noise applied per-pixel
- Natural Images: clean background -> one randomly selected image 

[visual complexity only]
- Natural videos: clean background -> videos [temporally dependent]

Prior work
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In-distribution (ID) vs. Out-of-distribution (OOD) Generalization

Training Evaluation Training Evaluation

ID Generalization OOD Generalization (prior work)

Always needed for excelling training reward
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RL Performance + Encoder Denoising Evaluation

EX-BMDP wrapper
Noise

Base MDP 
(DMC-state 

MDP)

RL 
Encoder

Actor / 
Critic

Denoising 
evaluation

(Ours)

Performance 
evaluation

(Prior work)

Transition 
model
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obs

action

RL algorithms 
(metric learning, losses)
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Quantifying Denoising
We introduce the denoising factor (DF), a measure that quantifies an 

encoder’s ability to denoise.
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Anchor x
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With same underlying 
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Negative examples x-
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Visited in evaluation
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Positive Score

Average distance from an anchor to its positive examples
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Negative Score

Average distance from an anchor to its negative examples
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Denoising Factor (DF)
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A normalized difference between Pos and Neg

Large DF, better denoising



Isolated Metric Estimation Setting

Running a SAC agent (or other baselines) with an Isolated metric encoder

- Optimized by metric(-related) losses
- Only used to evaluate DF
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Ensure fair comparison by:

√ Remove other losses on representation 
from analysis

√ Ensure a fixed data collection (π)



Experiment

- Benchmarking result on various tasks and noise settings
- Understanding task difficulty and agent’s performance on aggregate (~300 settings)

- Case study: What matters in metric (and representation) learning?

- Identifying key design choices that lead to performance gain

- Isolated Metric Evaluation Setting: Does Metric Learning Help with Denoising?

- Understanding the connection between metric learning and denoising

- OOD Generalization Evaluation on Pixel-based Tasks

- The setting of interest in previous work
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- SimSR perform the best (but why?)
- Increasing noise dim/std -> moderate reward drop
- Well-performing methods are robust to noise variations

State-based benchmarking result: IID Gaussian Noise

20 DMC tasks aggregated
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Return Denoising Factor (DF)



Case study: with (R’) / w/o (R) LayerNorm on representation
6 representative easy-to-hard tasks are sampled for later analysis.

Red: R’ > R        Blue: R’ < R

Most methods benefit from LayerNorm in the representation space

DeepMDP (RP+ZP) + LayerNorm ≈ SimSR 24

Return



Case study: ZP’s effectiveness in SimSR 

- RP does not matter too much here
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Isolated Metric Evaluation

-
LayerNorm

+
LayerNorm

ZP onlyZP + RP

Learned metric denoises, 
but not better than by optimizing ZP (with LayerNorm)
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Takeaways

- Evaluate simple, controlled settings first to build foundational insight

- Support metric‑learning claims via direct measure

- Self‑prediction (ZP) loss & Normalization truly matters

- Examine when metric learning offers unique benefit

Code PaperBlog
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Come to Poster #1 at 3pm!



(Largest) 
Bisimulation relation 

(s: R, P)

Bisimulation metrics

Homomorphism
(s,a: R, P)

Lax bisimulation 
metrics

π-bisimulation 
metrics

DBC (Amy)

DBC-normed (Mete)

DHPG 
(Sahand)

MICo (Pablo)

State Abstractions 
(Lihong, Nan)

SimSR 
(Hongyu)

RAP
(Jianda)

Self-predictive
DeepMDP

Arbitrary 
bisimulation relation

Contrastive 
methods

Deep-learning-friendly 
representation learning

Reconstru
ction (φo)

Knowledge Map

How to deal with Wasserstein and R/P?
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