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Motivation: State Abstraction in RL

Scaling RL to high-dimensional, distraction-rich domains remains

challenging (sensors’ output,
torque control
[1.15,

parameters)
_ Proprioceptive
‘ states
2.53,

=> 345,
-2.02,

Observations a compact state

Distracting DMC: Over 90% pixels are task-irrelevant )



What is a Good State Abstraction in RL?

- Denoise: Capturing task-relevant information

- Benefits: computation efficiency, sample efficiency,
generalization/robustness, better value estimation, ...

- But how to achieve this abstraction?

Behavioral metric: a distance that quantifies state
similarity based on differences inR & P

- Behaviorally similar states have closer distances




Behavioral Metric (distance) & Denoising Representation

Behaviorally similar states should have close representations, vice versa
Described by behavioral metric

Distances reflect diff. in reward
and fransition smoothly

P(X) =z = (21, 22) Al
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Isometric Embedding: connect and unify prior work

dx(r1,72) = dy(o(r1), P(22))

where dy is the target metric and dy is the representational metric. J

Target Meftric dx: a desired behavioral distance between states

(@) = € (du(6(@1), §(w2)) - d(1,22)

Use an auxiliary (regression) metric loss ¢ to approximate



Targe’r Metric d;\g - Examples, as design choices

PBSM (Castro, 2020; Zhang et al., 2020; Kemertas and
Aumentado-Armstrong, 2021):

d"(x1,x2) = cr|R"(x1) — R’r(xz)J-l-\cT Wi (d™)(P™(x1), P”(xz))/.

dR dT

MICo (Castro et al., 2021):

u"(x1,x2) = r|R"(x1) — R"(x2)| + 1 Extup( ) [u™ (x4, %2)]-
x~PT(:|x2)

SimSR (Zang et al., 2022):
dr uses learned P™, u™(x1, %) = dy(d(x1), p(x2)) = 1 — cos(¢(x1), B(x2)).

RAP (Chen and Pan, 2022):
dr(x1,%2)? = Eajrr,spn [(R(x1, 31) — R(x2, 32))?] — Var([ry,] — Var|ry,).
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Design choices in Metric Learning Objectives

g Encoder MLP heads
— — ___. (Actor/Critic/
CNN/MLP — Norm. @ 00 Rew, T Q/M/R/Z

a— models)
X

- Self-prediction (ZP) loss

Jzp(¢,v) = —log P, (¢(2') | ¢(x),a)

- Reward prediction (RP) loss

Jre(¢, k) = (Re(d(z),a) —r)?

- Metric loss function ¢ (regression loss, e.g., MSE/Huber)

It (8) = £ (du(8(@1), 6(22)) — dx (w1, 22))



Design choices in Normalizing Representations

Encoder MLP heads
— ___. (Actor/Critic/
CNN/MLP — Norm. ¢ (x) Rew. T T Q/T/R/Z
a— models)

- L2 normalization  L2Norm(¢) = Hib% (from SImSR)

- MaxNorm: adjust the diameter of the vector so that dv is bounded theoretically

dy(P(r1), ¢(22)) = dx(z1,22) < 1 iRCT (rlgasz(:c,a) — r;liglR(ac, a)) =1
v, if 9]l < 5,
MaxNorm (%)) := {% L1 Otherwpise_ ’ (from DBC-normed)

- LayerNorm (as default design choice in CNNs in prior work)

Y — ()

LayerNorm(¢) = a ® S00) 1 e
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Two baselines, five metric learning methods

Table 1: Summary of key implementation choices for the benchmarked methods.

- - Metric Target Other  Transition Normali
Metad dr dr L Loss Tri%k Losses Model -zation
SAC (Haarnoja et al., 2018) —— — — . S = =
DeepMDP (Gelada et al., 2019) — — — — RP + ZP Probabilistic —
DBC (Zhang et al., 2020) Huber W5 closed-form Huber MSE RP + ZP Probabilistic —
DBC-normed (Kemertas & Aumentado-Armstrong, 2021) Huber Wj closed-form Huber MSE RP +ZP Deterministic MaxNorm
MICo (Castro et al., 2021) Abs. Sample-based  Angular Huber — — —
RAP (Chen & Pan, 2022) RAP W5 closed-form Angular Huber RP + ZP Probabilistic —
SimSR (Zang et al., 2022) Abs.  Sample-based  Cosine Huber ZpP Prob. ensemble L2Norm




But...

9 how does the metrics help
denoising?

Promising returns are reported.
But are they driven by better denoising through metric learning?
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Study Design on
Denoising

I M By N

Task (Noise) Diversity
Generalization Evaluation
Evaluation Measure

Loss Attribution
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Noise Settings

State-based environments:

- IID Gaussian Noise (dims and stds can be varied)
- IID Gaussian Noise with Random Projection

IID Gaussian Noise IID Gaussian Noise with Random Projection
N
' ] ( id St 7.
iy & R™ 4 T:T o c Rn—{—m s xtp = Rn-{-m
J Concatenate L &t Project

{E ’\’N(ﬂ ’0_21) c R™ [A € R(11,+1n)><(n+m)’ Ai,j lf'Lsfll N(/L,,O',Q)

One run, one A sampled
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Noise Settings
Pixel-based (backgrounds can be grayscale or colored):

- IID Gaussian Noise applied per-pixel

- Natural Images: clean background -> one randomly selected image
[visual complexity only]

- Natural videos: clean background -> videos [temporally dependent]

Prior work

*

"

Original Clean IID Gaussian Grayscale Image Colored Image Grayscale Video Colored Video




In-distribution (ID) vs. Out-of-distribution (OOD) Generalization

Always needed for excelling training reward

Training Evaluation Training Evaluation

ID Generalization OOD Generalization (prior work)
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RL Performance + Encoder Denoising Evaluation

EX-BMDP wrapper

RL algorithms
(metric learning, losses)

Noise obs
RL _ Actor/ Fevaluation
Base MDP . Encoder Critic .
(DMC-state action (Prior work)
“ Reward Transition
Denoising model model
evaluation

(Ours)
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Quantifying Denoising

We introduce the denoising factor (DF), a measure that quantifies an
encoder’s ability to denoise.

16



Positive examples x+

With same underlying
states

Anchor x

Visited in evaluation

Negative examples x-

Any randomly sampled
observations

| ‘. kﬁ'
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Positive Score

Average distance from an anchor to its positive examples

Pos := [H

Positive examples x+

With same underlying
states
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Negative Score

Average distance from an anchor to its negative examples

Neg := 4: [d\p (¢ ( “.3

Negative examples x+

Any randomly sampled
observations
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Denoising Factor (DF)

DF; (¢) :=

A normalized difference between Pos and Neg

Large DF, better denoising
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Isolated Metric Estimation Setting

Running a SAC agent (or other baselines) with an Isolated metric encoder

- Optimized by metric(-related) losses
- Only used to evaluate DF

Ensure fair comparison by:

vV Remove other losses on representation

from analysis

v Ensure a fixed data collection (1)

Metric Learning Alg.

Isolated Metric Evaluation
(an instantiation)

| Data | —

—

ZP Loss Metric Loss RP Loss

) ) A

Transiton _ =~ Metric  Reward
Model Encoder Model

SAC

Qloss Actor loss

Data
ZP Loss Metric Loss RP Loss
A T A
Transition Reward
Model = B Model
Encoder
Qloss Actor loss
Critic <— —>  Actor
N ———

—

T Agent T | |
Encoder

Critic <— —>  Actor
: /

21



Experiment

Benchmarking result on various tasks and noise settings
- Understanding task difficulty and agent’s performance on aggregate (~300 settings)
Case study: What matters in metric (and representation) learning?
- Identifying key design choices that lead to performance gain
Isolated Metric Evaluation Setting: Does Metric Learning Help with Denoising?
- Understanding the connection between metric learning and denoising
OOD Generalization Evaluation on Pixel-based Tasks

- The setting of interest in previous work
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State-based benchmarking result: 11D Gaussian Noise

—4— SAC —4— DeepMDP —4— DBC —{— DBC-normed —4— MICo —4— RAP —— SimSR
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0 20 40 60 80 100 120 0O 1 2 3 4 5 6 7 8 0 20 40 60 80 100 120 “0 1 2 3 4 5 6 7
Noise Dim Noise Std Noise Dim Noise Std
Return Denoising Factor (DF)

20 DMC tasks aggregated
-  SimSR perform the best (but why?)

- Increasing noise dim/std -> moderate reward drop
-  Well-performing methods are robust to noise variations

8
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Case s’rudy: with (R’) / w/o (R) LayerNorm on representation

6 representative easy-to-hard tasks are sampled for later analysis.

Methods
Tsk  Return SAC DeepMDP DBC DBC-normed  MICo RAP SimSR

R 967.5+123  928.7+323  814.1+86.6 973.7+124 966.64+9.2 950.3+71.2 999.5+0.5
R’ 979.5+20.1 994.64+3.6  943.6+24.1 975.5+19.9 936.14+29.8 981.7+19.1  980.2+19.3

592.9+176.6  327.34+885  201.94385 619.0+35.1 419.0+759  240.6+36.4 926.8+10.9
R 770.6+658 | 955.0£7.1 193.7+222 577.5433.7 74534476 412.84393 934.6+16.0

R 6353+198 347.8484.0 23.9+26 628.9425.7 455.9+413 649.4+11.1  760.6+19.4
R’ 534.5+536 776.0+59  342.9+4545 759.84+19.4 611.04+225 661.64+884  761.6420.0

¢ 233.8459.0 381.1+649  219.5+63.5 433.34+473 41794442 441.1493.7 847.4421.7
R’ 483.8460  891.1+17.8 291.3+55.0 509.5+35.4 46744218 687.3+598 832.9+63.4

R 177.6+66.1 168.3+50.4 97.9+11.8 414.74+495 207.2+538 110.8+17.0 885.4+245
R [149577+530 [JO2SBE 95.9+124 473.4439.9 335.14426 201.1+263  917.1+139

R 0.1+0.0 31.3+16.7 0.3+0.3 51.1+134 0.4+40.3 0.840.5 23394226
R’ 12.4+49 195.44+19.9 6.2+4.8 125.8422.3 1.842.0 1.0+0.3 207.4+36.4

cartpole/balance

finger/turn_easy

walker/run

quadruped/run

finger/turn_hard

hopper/hop

Red:R’>R Blue: R’ <R
Most methods benefit from LayerNorm in the representation space
DeepMDP (RP+ZP) + LayerNorm ~ SimSR



Case study: ZP’s effectiveness in SImSR

Noise std: 8, Noise dim: 32

Mean Reward

Mean Denoising Factor

= SimSR - SimSR (Basic) - SimSR (Basic, No ZP)

= SimSR (with RP)

cartpole/balance finger/turn_easy walker/run quadruped/run finger/turn_hard hopper/hop
1000
750
500
250 _/ﬁ!f
0 | et
0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2
le6 le6 le6 le6 le6 le6
0 cartpole/balance finger/turn_easy walker/run quadruped/run finger/turn_hard hopper/hop
0.75
0.50
0.25
0.00
0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2
le6 le6 le6 le6 le6 le6

RP does not matter too much here
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Isolated Metric Evaluation

Mean Denoising Factor

Mean Denoising Factor

—— SAC

cartpole/balance

= DeepMDP

ZP + RP

finger/turn_easy

—— DBC

Noise std: 8.0, Noise dim: 32

= DBC-normed

walker/run

= MICo

quadruped/run

= SimSR

ZP only

= DeepMDP (w/o RP)

finger/turn_hard

hopper/hop

0 1 2 0 1 2 p 2 0 1 2
cartpole/balance finger/turn_easy walker/run finger/turn_hard hopper/hop
1 2 0 1 2 0 1 2 0 1 2 1 2 0 1 2

Learned metric denoises,

LayerNorm

e
LayerNorm

but not better than by optimizing ZP (with LayerNorm)
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Takeaways

[=]%

Blog Paper

Come to Poster #1 at 3pm!

- Evaluate simple, controlled settings first to build foundational insight
- Support metric-learning claims via direct measure
- Self-prediction (ZP) loss & Normalization truly matters

- Examine when metric learning offers unique benefit
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State Abstractions

Knowledge Map

(Largest)

(Lihong, Nan) \
Bisimulation relation

(s:R, P)

- p—

Reconstru

ction (o) bisimulation

Self-predictive
DeepMDP me

Arbitrary

relation

Contrastive

thods

/

Deep-learning-friendly

representation learning

Bisimulation metrics

nm-bisimulation
metrics

Homomorphism
(s,a: R, P)

Lax bisimulation
metrics

DHPG
(Sahand)

N to deal with Wasserstein and R/P?

DBC (Amy) MICo (Pablo)
/ /\
SimSR RAP

DBC-normed (Mete)

(Hongyu)

(Jianda)
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