

Understanding Effectiveness of Learning Behavioral *Metrics* in Deep Reinforcement *Learning*

Ziyan "Ray" Luo, Tianwei Ni, Pierre-Luc Bacon, Doina Precup, Xujie Si

Motivation: State Abstraction in RL

Scaling RL to high-dimensional, distraction-rich domains remains

challenging

(sensors' output, torque control parameters)

Proprioceptive states

2.53, 3.45, -2.02, ...]

a compact state

[1.15,

Distracting DMC: Over 90% pixels are task-irrelevant

What is a Good State Abstraction in RL?

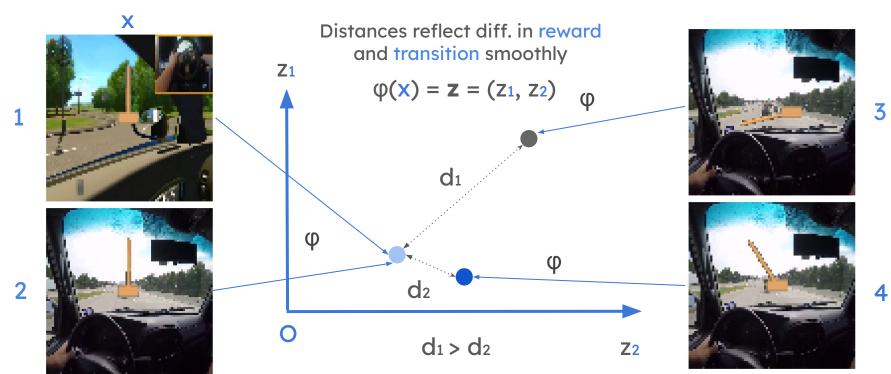
- **Denoise**: Capturing task-relevant information
- **Benefits**: computation efficiency, sample efficiency, generalization/robustness, better value estimation, ...
- But how to achieve this abstraction?

Behavioral metric: a **distance** that quantifies state similarity based on differences in **R & P**

- Behaviorally similar states have closer distances

Behavioral Metric (distance) & Denoising Representation

Behaviorally *similar* states should have *close* representations, vice versa Described by behavioral metric



Isometric Embedding: connect and unify prior work

$$d_{\mathcal{X}}(x_1, x_2) = d_{\Psi}(\phi(x_1), \phi(x_2))$$

where $d_{\mathcal{X}}$ is the **target metric** and d_{Ψ} is the **representational metric**.

Target Metric $d_{\mathcal{X}}$: a desired <u>behavioral</u> distance between states

$$J_M(\phi) = \ell \left(d_{\Psi}(\phi(x_1), \phi(x_2)) - \hat{d}_{\mathcal{X}}(x_1, x_2) \right)$$

Use an auxiliary (regression) metric loss ℓ to approximate

Target Metric $d_{\mathcal{X}}$ - Examples, as design choices

PBSM (Castro, 2020; Zhang et al., 2020; Kemertas and Aumentado-Armstrong, 2021):

$$d^{\pi}(x_1, x_2) = \underbrace{c_R | \mathcal{R}^{\pi}(x_1) - \mathcal{R}^{\pi}(x_2)|}_{d_R} + \underbrace{c_T \, \mathcal{W}_1(d^{\pi}) \big(\mathcal{P}^{\pi}(x_1), \mathcal{P}^{\pi}(x_2) \big)}_{d_T}.$$

MICo (Castro et al., 2021):

$$u^{\pi}(x_1, x_2) = c_R |\mathcal{R}^{\pi}(x_1) - \mathcal{R}^{\pi}(x_2)| + c_T \mathbb{E}_{\substack{x_1' \sim \mathcal{P}^{\pi}(\cdot | x_1) \\ x_2' \sim \mathcal{P}^{\pi}(\cdot | x_2)}} [u^{\pi}(x_1', x_2')].$$

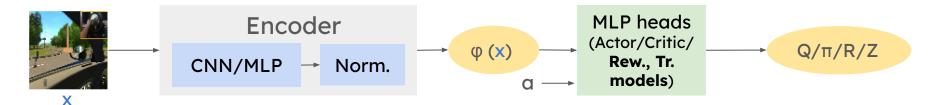
SimSR (Zang et al., 2022):

$$d_T$$
 uses learned $\hat{\mathcal{P}}^{\pi}, \quad u^{\pi}(x_1, x_2) = d_{\Psi}(\phi(x_1), \phi(x_2)) = 1 - \cos(\phi(x_1), \phi(x_2)).$

RAP (Chen and Pan, 2022):

$$d_R(x_1,x_2)^2 = \mathbb{E}_{a_1 \sim \pi, a_2 \sim \pi}[(\mathcal{R}(x_1,a_1) - \mathcal{R}(x_2,a_2))^2] - \operatorname{Var}[r_{x_1}] - \operatorname{Var}[r_{x_2}].$$

Design choices in Metric Learning Objectives



Self-prediction (ZP) loss

$$J_{\rm ZP}(\phi,\nu) = -\log P_{\nu}(\bar{\phi}(x') \mid \phi(x), a)$$

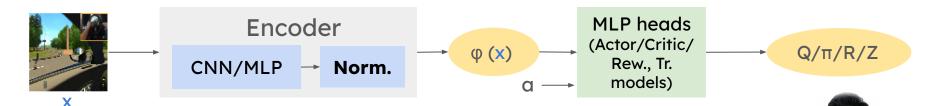
- Reward prediction (RP) loss

$$J_{\text{RP}}(\phi, \kappa) = (R_{\kappa}(\phi(x), a) - r)^2$$

- Metric loss function ℓ (regression loss, e.g., MSE/Huber)

$$J_M(\phi) = \ell \left(d_{\Psi}(\phi(x_1), \phi(x_2)) - \hat{d}_{\mathcal{X}}(x_1, x_2) \right)$$

Design choices in Normalizing Representations



- L2 normalization $L2Norm(\psi) = \frac{\psi}{\|\psi\|_2}$. (from SimSR)
- MaxNorm: adjust the diameter of the vector so that d♥ is bounded theoretically

$$d_{\Psi}(\phi(x_1), \phi(x_2)) = d_{\mathcal{X}}(x_1, x_2) \leq \frac{c_R}{1 - c_T} (\max_{x, a} \mathcal{R}(x, a) - \min_{x, a} \mathcal{R}(x, a)) := C.$$

$$\text{MaxNorm}(\psi) := \begin{cases} \psi, & \text{if } \|\psi\|_p < \frac{C}{2}, \\ \frac{C}{2} \frac{\psi}{\|\psi\|_p}, & \text{otherwise.} \end{cases}$$
 (from DBC-normed)

LayerNorm (as default design choice in CNNs in prior work)

LayerNorm
$$(\psi) = \alpha \odot \frac{\psi - \mu(\psi)}{\sqrt{\sigma^2(\psi) + \epsilon}} + \beta$$

Two baselines, five metric learning methods

Table 1: Summary of key implementation choices for the benchmarked methods.

Method	$\hat{d_R}$	$\hat{d_T}$	d_{Ψ}	Metric Loss	Target Trick	Other Losses	Transition Model	Normali -zation
SAC (Haarnoja et al., 2018)	·	_			·		_	_
DeepMDP (Gelada et al., 2019)	8	_	_		_	RP + ZP	Probabilistic	
DBC (Zhang et al., 2020)	Huber	W_2 closed-form	Huber	MSE	_	RP + ZP	Probabilistic	
DBC-normed (Kemertas & Aumentado-Armstrong, 2021)	Huber	W_2 closed-form	Huber	MSE	. 	RP + ZP	Deterministic	MaxNorm
MICo (Castro et al., 2021)	Abs.	Sample-based	Angular	Huber	√	_	_	
RAP (Chen & Pan, 2022)	RAP	W_2 closed-form	Angular	Huber	_	RP + ZP	Probabilistic	_
SimSR (Zang et al., 2022)	Abs.	Sample-based	Cosine	Huber	_	ZP	Prob. ensemble	L2Norm

But...

how does the metrics help denoising?

Promising returns are reported.
But are they driven by better denoising through metric learning?

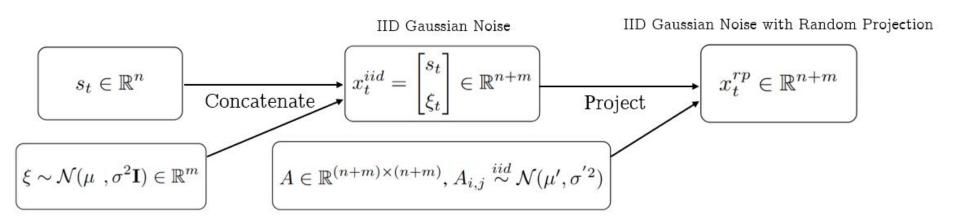
Study Design on Denoising

- ☐ Task (Noise) Diversity
- Generalization Evaluation
- Evaluation Measure
- Loss Attribution

Noise Settings

State-based environments:

- IID Gaussian Noise (dims and stds can be varied)
- IID Gaussian Noise with Random Projection

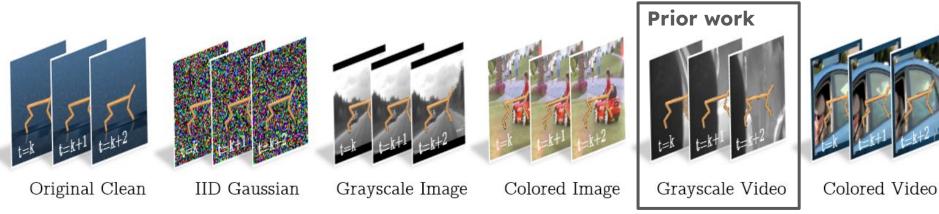


One run, one A sampled

Noise Settings

Pixel-based (backgrounds can be grayscale or colored):

- IID Gaussian Noise applied per-pixel
- Natural Images: clean background -> one randomly selected image
 [visual complexity only]
- Natural videos: clean background -> videos [temporally dependent]



In-distribution (ID) vs. Out-of-distribution (OOD) Generalization

Always needed for excelling training reward

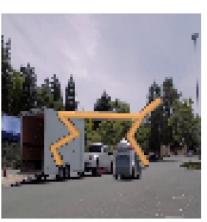
Training

Evaluation

ID Generalization

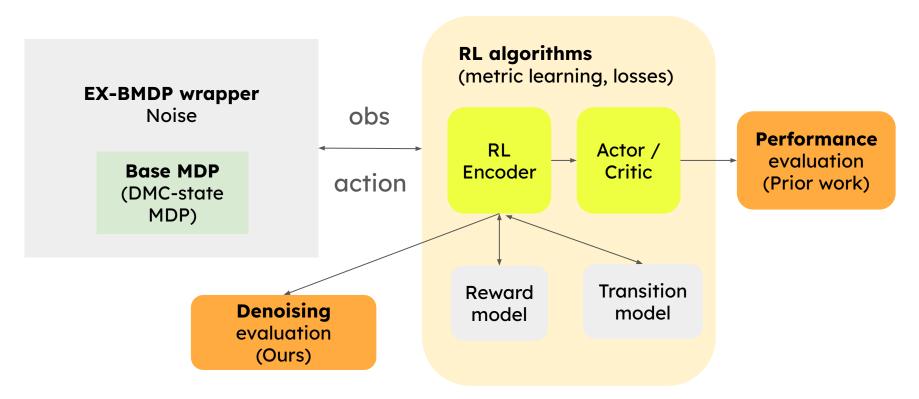
Training

Evaluation



OOD Generalization (prior work)

RL Performance + Encoder Denoising Evaluation



Quantifying Denoising

We introduce the *denoising factor* (DF), a measure that **quantifies** an encoder's ability to **denoise**.

Positive examples x+

With same underlying states

Anchor X Visited in evaluation

Negative examples x-

Any randomly sampled observations

Positive Score

Average distance from an anchor to its positive examples

Positive examples x+

With same underlying states

Negative Score

Average distance from an anchor to its negative examples

Negative examples x+

Any randomly sampled observations

Denoising Factor (DF)

$$\mathrm{DF}^\pi_{d_\Psi}(\phi) := rac{\mathrm{Neg-Pos}}{\mathrm{Neg+Pos}} \in [-1,1].$$

A normalized difference between Pos and Neg

Large DF, better denoising

Isolated Metric Estimation Setting

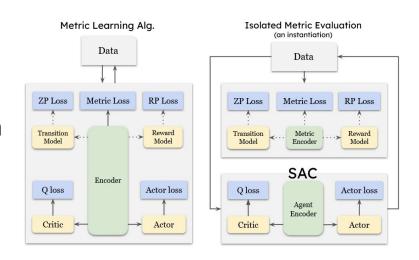
Running a SAC agent (or other baselines) with an <u>Isolated metric encoder</u>

- Optimized by **metric(-related) losses**
- Only used to evaluate DF

Ensure fair comparison by:

√ Remove other losses on representation from analysis

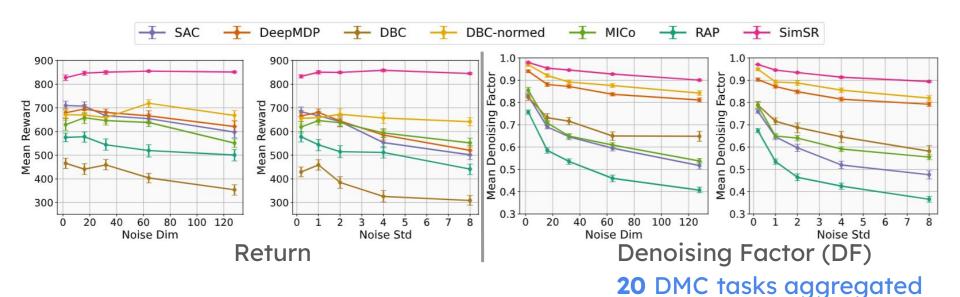
 $\sqrt{}$ Ensure a fixed data collection (π)



Experiment

- **Benchmarking** result on various tasks and noise settings
 - Understanding task difficulty and agent's performance on aggregate (~300 settings)
- Case study: What matters in metric (and representation) learning?
 - Identifying key design choices that lead to performance gain
- Isolated Metric Evaluation Setting: Does Metric Learning Help with Denoising?
 - Understanding the connection between metric learning and denoising
- OOD Generalization Evaluation on Pixel-based Tasks
 - The setting of interest in previous work

State-based benchmarking result: IID Gaussian Noise



- SimSR perform the best (but why?)
- Increasing noise dim/std -> moderate reward drop
- Well-performing methods are robust to noise variations

Case study: with (R') / w/o (R) LayerNorm on representation

6 representative easy-to-hard tasks are sampled for later analysis.

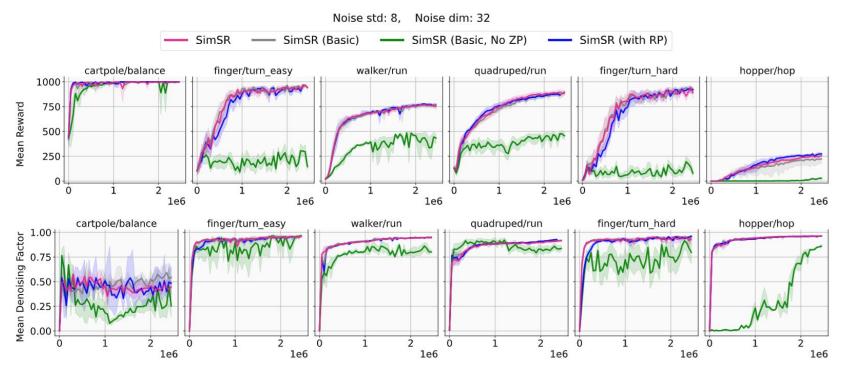
_		Methods									
Task Return		SAC	DeepMDP	DBC	DBC-normed	MICo	RAP	SimSR			
cartpole/balance	$R \\ R'$	967.5±12.3 979.5±20.1	928.7±32.3 994.6±3.6	814.1±86.6 943.6±24.1	973.7±12.4 975.5±19.9	966.6±9.2 936.1±29.8	950.3±71.2 981.7±19.1	999.5±0.5 980.2±19.3			
finger/turn_easy	$R \\ R'$	592.9±176.6 770.6±65.8	327.3±88.5 955.0±7.1	201.9±38.5 193.7±22.2	619.0±35.1 577.5±33.7	419.0±75.9 745.3±47.6	240.6±36.4 412.8±39.3	926.8±10.9 934.6±16.0			
walker/run	$R \\ R'$	635.3±19.8 534.5±53.6	347.8±84.0 776.0±5.9	23.9±2.6 342.9±54.5	628.9±25.7 759.8±19.4	455.9±41.3 611.0±22.5	649.4±11.1 661.6±88.4	760.6±19.4 761.6±20.0			
quadruped/run	$R \\ R'$	233.8±59.0 483.8±6.0	381.1±64.9 891.1±17.8	219.5±63.5 291.3±55.0	433.3±47.3 509.5±35.4	417.9±44.2 467.4±21.8	441.1±93.7 687.3±59.8	847.4±21.7 832.9±63.4			
finger/turn_hard	$R \\ R'$	177.6±66.1 495.7±53.1	168.3±50.4 925.8±14.7	97.9±11.8 95.9±12.4	414.7±49.5 473.4±39.9	207.2±53.8 335.1±42.6	110.8±17.0 201.1±26.3	885.4±24.5 917.1±13.9			
hopper/hop	$R \\ R'$	0.1±0.0 12.4±4.9	31.3±16.7 195.4±19.9	0.3±0.3 6.2±4.8	51.1±13.4 125.8±22.3	0.4±0.3 1.8±2.0	0.8±0.5 1.0±0.3	233.9±22.6 207.4±36.4			

Red: R' > R Blue: R' < R

Most methods benefit from LayerNorm in the representation space

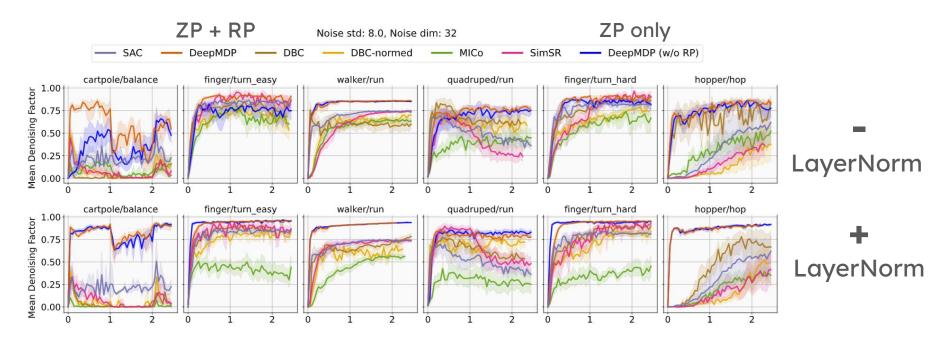
DeepMDP (RP+ZP) + LayerNorm ≈ SimSR

Case study: ZP's effectiveness in SimSR



RP does not matter too much here

Isolated Metric Evaluation



Learned metric denoises,

but not better than by optimizing ZP (with LayerNorm)

Takeaways

Blog

Paper

- Come to Poster #1 at 3pm!
- Evaluate **simple, controlled settings first** to build foundational insight
- Support metric-learning claims via direct measure
- **Self-prediction (ZP) loss** & **Normalization** truly matters
- Examine when metric learning offers unique benefit

