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ABSTRACT
Human mobility prediction is an important task in the field of spa-
tiotemporal sequential data mining and urban computing. Despite
the extensive work on mining human mobility behavior, little atten-
tion was paid to the problem of successive mobility prediction. The
state-of-the-art methods of human mobility prediction are mainly
based on supervised learning. To achieve higher predictability and
adapt well to the successive mobility prediction, there are four key
challenges: 1) disability to the circumstance that the optimizing
target is discrete-continuous hybrid and non-differentiable. In our
work, we assume that the user’s demands are always multi-targeted
and can be modeled as a discrete-continuous hybrid function; 2)
difficulty to alter the recommendation strategy flexibly according to
the changes in user needs in real scenarios; 3) error propagation and
exposure bias issues when predicting multiple points in successive
mobility prediction; 4) cannot interactively explore user’s potential
interest that does not appear in the history. While previous methods
met these difficulties, reinforcement learning (RL) is an intuitive an-
swer for this task to settle these issues. We innovatively introduce
RL to the successive prediction task. In this paper, we formulate
this problem as a Markov Decision Process. We further propose a
framework - RLMob to solve our problem. A simulated environment
is carefully designed. An actor-critic framework with an instance
of Proximal Policy Optimization (PPO) is applied to adapt to our
scene with a large state space. Experiments show that on the task,
the performance of our approach is consistently superior to that of
the compared approaches 1.
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1 INTRODUCTION
The advance inGPS andWi-Fi-equippedmobile devices and location-
acquisition systems have generated massive spatiotemporal trajec-
tory data representing humanmobility. A large amount of trajectory
data provides us with unprecedented information (e.g., location,
timestamp, user ID) to understand human mobility patterns and
stimulates a number of trajectory mining tasks for various appli-
cations [30]. For example, Deepmove [5] and VANext [7] model
sequential transition regularities from historical trajectory data and
predict where a user will go next for personalized resource recom-
mendation and allocation. TULER [8] and DeepTUL [19] learn the
essential intricate features from the whole trajectory and then links
the trajectory to users for identifying the potential criminals or
terrorists.

Despite the extensive work on mining human mobility behavior,
especially next location prediction [5, 7, 15, 18], little attention was
paid to the problem of successive mobility prediction (i.e., predicting
locations of the next few steps) – which could benefit both gov-
ernments and individuals. For example, by successively predicting
the future locations the human tends to visit, governments could
estimate the evolution of traffic and design intelligent transporta-
tion systems with smart scheduling strategies in advance to handle
the crowd aggregation and reduce the traffic jams and potential
stampede [29]. In mobile edge computing scenarios where people
always take advantage of cloud services to improve the computa-
tion capabilities and energy efficiencies of mobile devices, network
operators always need to make the successive mobility prediction
to constantly migrating the corresponding resources to cater to the
movement of its user. Therefore, users could benefit from lower
service latency and enjoy a better quality of experience [25]. More-
over, it could help in forecasting the trace of terrorists/criminals
for public safety [8].

With the proliferation of such applications, it is in great need to
solve the successive mobility prediction problem – which is a chal-
lenging task. The previous works on predicting human mobility
all focus on the next location prediction by learning sequential
statistical models. The Markov based models [17, 23] build a tran-
sition matrix between all locations to predict the next move of a
user, while recurrent neural network (RNN) [5, 8] based methods
learn sequential transition patterns in high-dimension space by
location embedding to improve the prediction accuracy. Despite
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Figure 1: When the algorithm predicted a wrong location.

the promising results of RNN-based approaches for crowd flow
prediction, there are four key challenges to be solved to realize high
predictability of successive mobility prediction.

Firstly, in most cases, the locations that an algorithm predicts
do not coincide with the true next locations. In such scenarios,
the “wrong” locations are not always the same in the user’s mind.
However, in most supervised learning methods, cross-entropy loss
is applied which equally regards all negative locations. Figure 1
depicts this phenomena. In Figure 1, the supervised learning ap-
proaches fail to consider this issue and the prediction deviates the
user’s need (only one in the correct category and all the predicted
location are geographically far from the ground truth), while our
approach achieves better user satisfaction (two points in the correct
category and all the predicted location are geographically near the
ground truth). In the above-mentioned case, the multi-targetedmod-
eled user satisfaction can be more precisely modeled as a discrete-
continuous hybrid function, which is non-differentiable and hard
to be optimized with supervised learning methods. Analogously,
the user satisfaction collected online is also multi-targeted which
is more likely to be a discrete-continuous hybrid target. Supervised
learning methods are hard to tackle such target functions.

Secondly, the user has a dynamically evolving preference which
has long-term dependencies. For instance, a user used to buy staple
goods at the shop A. However, for some reason, this shop recently
stopped selling goods C that the user liked. For a long time, this user
chose to go to the shop B that is far away from his home instead of
the shop A. After some time, the shop A resumed to sell goods C and
the user again, chose to purchase goods at the shop A.When dealing
with such cases, supervised learning methods are not flexible. These
approaches cannot capture the rapidly changing preference when
interacting with users. Models should be constantly retrained using
up-to-date data to keep on with the user’s evolving preference.

Thirdly, especially in successive mobility prediction, the exposure
bias issue cannot be ignored. This issue is oftenmentioned in natural
language processing tasks, which means in test stage, the model
has no exposure to the full range of errors when the teacher-forcing

technique [27] is applied. If this technique is not used, the error of
prediction could propagate which further hampers the algorithm
to perform well.

Lastly, both traditional methods and supervised learning meth-
ods are lacking the exploration of user preference. Pretrained mod-
els can only predict mobility in a fixed manner.

The above-mentioned challenges can all be solved via reinforce-
ment learning (RL), which is widely applied in many decision-
making problems [2, 3, 16]. We innovatively introduce RL to succes-
sive mobility prediction. The first challenge can be settled because
the reward in RL can be non-differentiable. In the case described
in the second challenge, the interactive nature and the trial-and-
error learning method of RL make it a promising solution in such
a scenario. The third challenge is also not an issue in RL because
the training sequences are generated by the models rather than
fetching from ground truth using the teacher-forcing technique in
RNN-based methods. As for the last challenge, exploration is always
a significant part of RL algorithms. In our work, the agent learns a
stochastic policy with some possibility to sample the non-optimal
action. Deep reinforcement learning (DRL) combines RL with deep
learning which has better generalizability.

In this work, our contribution can be summarized in four folds:
• We attack a novel problem successive mobility prediction (i.e.,
predicting locations of the next few steps) and leverage deep
reinforcement learning (DRL) to conduct successive mobility pre-
diction. There is few existing work that utilizes DRL to conduct
successive mobility prediction. We formulate the successive mo-
bility prediction problem as a Markov Decision Process (MDP).
• We further propose a framework - RLMob to solve the successive
mobility prediction problem. A simulated environment (RLMob
Environment Simulator) is carefully designed, which simulates
user satisfaction by making full use of information in the dataset.
It enables the agent to do offline training through interacting
with the simulated environment. The state and reward are further
carefully designed in order to better capture useful information
and simulate user satisfaction.
• We apply actor-critic framework with an instance of Proximal
Policy Optimization (PPO) to adapt to our scene with a large
state space. Generalized Advantage Estimation (GAE) is further
utilized to better shaping the advantage function. The pretraining
is applied to the policy network (actor) to reduce the impact on
random seeds and help converge.
• We conduct comparison experiments on traditional methods,
state-of-the-art methods, and a basic DRL algorithm on a self-
made dataset and two publicly available datasets. Results show
that our method consistently superior to the state-of-the-art
supervised learning methods and is also better than the basic RL-
based method. It shows the superiority of DRL in our successive
mobility prediction task and the effectiveness of our amendment.

2 RELATEDWORK
Previous works dealing with human mobility prediction mainly
focus on two categories of methods: pattern-based methods and
model-based methods.

Pattern-based methods. These methods firstly find out some cer-
tain mobility patterns in history, and then predict mobility with



these patterns. Most early works are based on matrix factorization
(MF). Liu et al. [14] adopt probabilistic non-negative matrix factor-
ization, learning geographical predilection based on user’s mobility.
Lian et al. [13] propose GeoMF model. It is based on weight-based
matrix factorization (WMF) and the geographic impact.

Model-based methods. They aim to learn statistical models from
the trajectories. Early methods are mostly based on Markov chain
theory. These approaches establish transition matrices to help pre-
dict locations. Recurrent neural network (RNN) is a state-of-the-art
model to capture sequential patterns. It has an outstanding ability to
fit into the trajectory and session data mining tasks [10, 15]. Hidasi
et al. develop GRU4Rec [10] which applies GRU to the session-based
recommendation. Liu et al. [15] propose Spatial-Temporal Recurrent
Neural Networks (ST-RNN) to model temporal and spatial contexts.
The about-mentioned approaches work well on the trajectory data
with considerable sequential patterns. However, the GTSM data
is very sparse with high order sequential patterns, bringing big
challenges to realize accurate mobility prediction. Miao et al. [18]
apply the convolutional neural network (CNN) to capture sequential
patterns as local features of the image that can tackle high order
sequential patterns.

Reinforcement Learning (RL) is widely applied in many decision-
making problems [2, 3, 16]. Actor-critic [24] is a commonly used
architecture in RL that uses an actor to estimate the optimal policy
and a critic to evaluate the performance of the actor. REINFORCE
[26] is a basic form of policy optimization which increases the
possibility of actions that have high rewards while decreasing the
possibility of actions with low rewards. Trust Region Policy Op-
timization (TRPO) [20] is proposed to improve the stability and
convergence of REINFORCE. It takes the largest step possible to
improve performance while satisfying a KL-Divergence constraint
on the distance between new and old policies. Proximal Policy Opti-
mization (PPO) [22] simplifies the problem to first-order and utilizes
some other tricks to keep the old and new policy close. PPO-Penalty
and PPO-Clip are the two main variants of PPO.

3 PRELIMINARIES
3.1 Notations and Problem Formulation
The trajectory data contains millions of entries in a region. Each
entry is always recorded with spatial, temporal, and personal in-
formation to represent the essential elements for an event. We
partition a region (e.g. city or campus) in a suitable coordinate
system (e.g., categories, longitude, latitude or some landmarks) to
get representative location points, namely point of interest (POI).
As for temporal information, motivated by previous work [18, 19],
we align all the real-value timestamps in the entry into a fixed
time interval to aggregate mobility statistics and then split the time
interval into 𝑇 timeslots to learn the context information. Let P
denotes a set of POIs andU denotes a set of users.

Definition 1. (Trajectory Sequence [18]) We define a spatiotem-
poral point𝑞 as a tuple of location point 𝑝 and timeslot 𝑡 , i.e.,𝑞 = (𝑝, 𝑡).
For a user ID 𝑢, trajectory sequence T is the aggregation of spatiotem-
poral points, i.e., T𝑢 = 𝑞1𝑞2 · · ·𝑞𝐿 , where 𝑞 is listed by the timestamp.
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Figure 2: The interactions between RLMob Agent and RL-
Mob Environment in MDP.

Definition 2. (Trajectory) Given a trajectory sequence T𝑢 for a
user 𝑢, trajectory is a subsequence of T𝑢 . The 𝑘-th trajectory with
length𝑚 can be represented as T𝑘

𝑢 = 𝑞𝑘𝑞𝑘+1 · · ·𝑞𝑘+𝑚−1.

Transforming a trajectory sequence into several trajectories does
not only reduce computational complexity but also enables us to
mine richer knowledge. Since it is not the core part of our work,
following [18], we use the sliding window method with length𝑚
to generate the trajectories. As for successively predicting next 𝑛
locations with corresponding timestamp set, we transfer the set of
timestamp into the timeslot set, represented as T={𝑡1, 𝑡2, · · · , 𝑡𝑛}.

Problem (Successive Mobility Prediction): Given historical
trajectory T𝑘

𝑢 = 𝑞𝑘𝑞𝑘+1 · · ·𝑞𝑘+𝑚−1, and the prediction timeslot set
T𝑘𝑢 , the task of successive mobility prediction is to predict the next
𝑛 spatial points, i.e., 𝑝𝑘+𝑚𝑝𝑘+𝑚+1 · · · 𝑝𝑘+𝑚+𝑛−1, which is called the
target session.

Here 𝑛 and𝑚 can be variables. Thus, the user historic trajectory
and target session can both be variable-length.

3.2 MDP Formulation
The problem of successive mobility prediction can be modeled as a
Markov Decision Process (MDP). MDP is defined by the five-tuple
(S,A,P,R, 𝛾), where S is the state space, A the action space,
P : S × S × A → R+ the transition function, and R : S ×A → R
the reward function. At every time step, the RLMob agent interacts
with the environment, taking an action 𝑎 ∈ A according to the
current state 𝑠 ∈ S and receives a reward 𝑅. This trial-and-error
search procedure is illustrated in Figure 2. We did not reduce the
problem into a partially observed MDP (POMDP) to avoid over-
complication. The details of each element are as follows:
• State S. At each time step, an agent requires an observation of
the environment to determine what to do next. In this work, the
following observations may helpful: a user’s characteristics, user
historical trajectory, and the timeslots. Details of state definition
are in Section 4.1.
• ActionA. An action 𝑎 is to recommend a location in the action
space. The action space of the RLMob agent is all the available
locations in the dataset, which is a discrete action space. To
simplify the problem, at each time step, the RLMob agent only
recommends one location to the user.
• Transition function P. It defines the probability of transition
from the current state 𝑠 to the next state 𝑠 ′. Once the RLMob
agent takes an action and the next timeslot is collected, the
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Figure 3: The architecture of RLMob Environment Simula-
tor and its interaction with the agent.

transition 𝑝 (𝑠 ′ |𝑠, 𝑎) is determined. More details can be seen in
the next section.
• Reward R. When the RLMob agent takes an action 𝑎 ∈ A at
a state 𝑠 ∈ S, the RLMob environment simulator will give an
immediate feedback 𝑅(𝑠, 𝑎) to evaluate the action 𝑎 at state 𝑠 .
The details of the reward design can be seen in the next section.
• Discount factor 𝛾 . The discount factor 𝛾 ∈ [0, 1] helps the
RLMob agent strike a balance between the instant feedback and
the long-term yield. 𝛾 = 0 implies RLMob only considers instant
reward and 𝛾 = 1 implies all future rewards are fully counted.

4 METHOD
4.1 RLMob Environment Simulator
In this section, we mainly introduce a simulated environment for
our framework to do offline training. To initialize the environment
properly, pretraining for locations, users, timeslots embeddings
and trajectory encoding net is essential. The well-designed state
and reward enable the environment to cooperate with the agent to
complete the successive mobility prediction task.

4.1.1 Environment Initialization. First, we need to convert the real-
value timestamp of each record (i.e. the number of seconds since
1970) into the fixed-interval timeslot. According to the concept of
timeslots in Section 3.1, we divided all the timestamps into 168
timeslots, each of which has a length of 1 hour, representing each
hour of the week. We delete some users with too short trajecto-
ries to ensure there is enough data for the algorithm to exploit.
Subsequently, we split the dataset into training and test dataset.
Next, we divide the user trajectory sequences into a fixed-length
or unfixed-length trajectory using the sliding window algorithm. It
not only improves the utilization of data but also adapts the session
length to the capacity of the models.

Another essential step is pretraining. All the embeddings are
pretrained using GRU4Rec [10] under the task of predicting the
next location.

With all these steps taken, all preprocessed datasets except for the
target part of the test dataset are feed into the RLMob environment
simulator.

4.1.2 State Components. The components of the state are designed
as follows:

The characteristics of the users 𝑒𝑢 . In particular, when it comes
to datasets with a large range of positions, different users have
significant differences in their preferences, which are closely related
to users’ life habits, demographic information, and other factors.
But in some cases, such as a university mobility dataset, the user
behavior pattern is monotonous, and this feature may become noise.

The historical trajectory T𝑘
𝑢 = 𝑞𝑘𝑞𝑘+1 · · ·𝑞𝑘+𝑚−1 of the user. It is

the most important part of the state, which contains user prefer-
ences and some high-level mobility patterns. It is the most useful
information to predict the following locations and should be part
of the state representation in any case. The timeslots of historical
locations may also make sense, because it adds contextual infor-
mation and, in some cases, allows an agent to better understand
the spatiotemporal relationship. However, this will also greatly
increase the complexity of the state space. Considering the weak
convergence of DRL algorithms, such characteristics may not be
applicable in all cases. In our framework, the mentioned user trajec-
tories are encoded by the trajectory encoding net, a pretrained long
short-term memory (LSTM), which outputs a fixed-length trajectory
representation vector.

The prediction timeslot set 𝑇𝑘𝑢 . It may also be helpful because
users generally have different behavior patterns at different times,
such as going to the restaurant for dinner at 6:30 PM every night,
going to the library to read books at 9:00 AM on Sunday, etc. In
RLMob, one of the following timeslot is used in each state.

Pretrained embeddings. We adopt the representation of the fea-
tures after pretraining as the state representation inspired by Item2Vec
[1]. We pretrain all the embedding using GRU4Rec [10] under the
task of predicting the next location.

4.1.3 Reward Design. The reward function in RL is a feedback
value given by the environment to an agent to evaluate the agent’s
actions. The optimization goal of RL is to maximize the expected
cumulative return. The goal of this work is to maximize user satis-
faction with the successive predicted locations, and it is intuitive
to model user satisfaction within the reward function. But how
to define “satisfaction” and, to what extent the user “satisfies”? It
usually requires complex modeling to make it accurately depicted.
A simple approach is to directly apply the framework online and
ask users how satisfied they are with the predicted results, or infer
their satisfaction from some of their behaviors. However, this ap-
proach requires a large amount of cost and loss of users caused by
the cold-start issue of the recommender system.

Therefore, in this work, we did not adopt this approach but
designed a function to approximate the user’s demand. In this
work, we believe that better predictions are not only to predict
more “optimal” locations but also to make the deviation from the
“optimal” locations smaller when the agent makes a mistake. An
illustration of the idea is shown in Figure 1. Thus, the function
describing user needs is designed into a discrete-continuous hybrid
function. Note that this reward function can also be substituted for
other user satisfaction metrics that are calculated more reasonably,
while other parts of the framework can still be applied.



In this paper, the reward function 𝑟 (𝑠𝑡 , 𝑎𝑡 ) is designed as follows:

𝑟 (𝑠𝑡 , 𝑎𝑡 ) = 𝑃𝑆 (𝑠𝑡 , 𝑎𝑡 ) +𝐶𝑆 (𝑠𝑡 , 𝑎𝑡 ) + 𝐿2-𝐷𝑖𝑠𝑡 (𝑠𝑡 , 𝑎𝑡 ) (1)

where 𝑃𝑆 indicates the score of whether the prediction aligns
with the ground truth:

𝑃𝑆 (𝑠𝑡 , 𝑎𝑡 ) =


𝑘, 𝑎𝑡 = 𝑙

∗ (𝑠𝑡 )

0, 𝑎𝑡 ≠ 𝑙
∗ (𝑠𝑡 )

(2)

where 𝑙∗ (𝑠𝑡 ) is the ground truth obtained from the target session
and 𝑘 is a constant.
𝐶𝑆 indicates the score of whether the prediction is align with

the true location’s category:

𝐶𝑆 (𝑠𝑡 , 𝑎𝑡 ) =


𝑏, 𝐶 (𝑎𝑡 ) = 𝑐∗ (𝑠𝑡 )

0, 𝐶 (𝑎𝑡 ) ≠ 𝑐∗ (𝑠𝑡 )
(3)

where 𝑐∗ (𝑠𝑡 ) is true location’s category, 𝐶 (𝑎𝑡 ) is the category of
predicted location (action) 𝑎𝑡 and 𝑏 is a constant.
𝐿2-𝐷𝑖𝑠𝑡 is the scaled Euclidean Distance between pretrained em-

beddings of the predicted location and the ground truth, which
represents the similarity of locations in “context”. 𝑠𝑡 and 𝑎𝑡 respec-
tively represents the state and action at the time step 𝑡 .

𝐿2-𝐷𝑖𝑠𝑡 (𝑠𝑡 , 𝑎𝑡 ) = 𝛼

√∑ |𝐷 |
𝑖=1 (𝑒

𝑖
𝐿
(𝑎𝑡 ) − 𝑒𝑖𝑙∗ (𝑠𝑡 ))

2

|𝐷 | (4)

where 𝛼 is the factor to balance the scale of 𝐷𝑖𝑠𝑡 and the other two
scoring function 𝑃𝑆 and 𝐶𝑆 , |𝐷 | is the dimension of the location
embedding vector, 𝑒𝑖

𝐿
(𝑎𝑡 ) is the 𝑖-th feature in the prediction loca-

tion’s embedding vector, 𝑒𝑖
𝑙∗
(𝑠𝑡 ) represents the 𝑖-th feature in the

true location’s embedding vector from the target session.
Another issue in the reward design is that, the variance of the

reward function is large. It tends to lead to the gradient instability,
making the models difficult to converge. We can utilize RNN-based
method to predict an action 𝑎′𝑡 as our baseline with reward 𝑟 (𝑠𝑡 , 𝑎′𝑡 ).
The improved reward 𝑅(𝑠𝑡 , 𝑎𝑡 ) is given by:

𝑅(𝑠𝑡 , 𝑎𝑡 ) = 𝑟 (𝑠𝑡 , 𝑎𝑡 ) − 𝑟 (𝑠𝑡 , 𝑎′𝑡 ) (5)

4.1.4 Architecture of RLMob Environment Simulator. The architec-
ture is shown in Figure 3. At first, the environment gets an action
from the agent (if it is at the initial step of an episode, no action is
needed). The action becomes part of the history, which is encoded
by the trajectory encoding net. With the next timeslot embedding
fused, the next state is determined. The action is also fed into the
reward grader, which grades the action using the reward in Section
4.1.3. The reward is then returned to the agent.

4.2 RLMob Agent
It is challenging to predict successive locations with DRL. The
heterogeneity of user trajectory with unfixed length, diversified of
preference and even some serendipity leads to a large variety of
state encoding, which makes our agent difficult to converge.

Thus, in this work, we adopt the actor-critic architecture [24]
with an instance of Proximal Policy Optimization (PPO) [22] to
solve the problems above. Utilizing actor-critic framework brings
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Figure 4: The architecture of RLMob Agent. We leverage the
actor-critic framework.

us flexibility to choose a reasonable horizon to update the value
function and the policy to accelerate convergence.

The agent’s actor-critic architecture and its interaction with the
environment are shown in Figure 4. The framework has a policy
network to estimate the policy 𝜋𝜃 , and a value network called critic
to compute the state-value function 𝑉𝜙 (𝑠𝑡 ). In the framework, the
actor network’s parameters 𝜃 are updated as follows:

To accelerate training, the actor network can also be pretrained.
The pretraining also reduce the impact of different model initializa-
tion methods and random seeds. To help pretraining, the structure
of the network can be the same as the fusion part of our baseline,
GRU4Rec, introduced in Section 5.2. Thus, our method can also be
regarded as an enhancement of the pretrained network.

PPO is one of the state-of-the-art policy optimization approach
and is applied in a wide range of problems. PPO-Penalty and PPO-
Clip are the two main variants of PPO. In this work, we mainly
refer to PPO-Clip. It minimizes the following objective to learn a
stochastic policy 𝜋𝜃 :

𝐽𝑃𝑃𝑂−𝐶𝑙𝑖𝑝 (𝜃 ) =
∑
(𝑠𝑡 ,𝑎𝑡 )

min
(
𝜋𝜃 (𝑎𝑡 |𝑠𝑡 )
𝜋𝜃𝑘 (𝑎𝑡 |𝑠𝑡 )

𝐴
𝜋𝜃𝑘 (𝑠𝑡 , 𝑎𝑡 ),

clip
(
𝜋𝜃 (𝑎𝑡 |𝑠𝑡 )
𝜋𝜃𝑘 (𝑎𝑡 |𝑠𝑡 )

, 1 − 𝜖, 1 + 𝜖
)
𝐴
𝜋𝜃𝑘 (𝑠𝑡 , 𝑎𝑡 )

) (6)

where 𝜖 is the hyperparameter that controls the distance between
old policy𝜋𝜃𝑘 and new policy𝜋𝜃 . The advantage function𝐴𝜋 (𝑠𝑡 , 𝑎𝑡 )
is estimated using the Generalized Advantage Estimation (GAE) [21]
as follows:

𝐴(𝑠𝑡 , 𝑎𝑡 ) =
𝐿∑
𝑙=0
(𝛾𝜆)𝑙𝛿𝑉

𝑡+𝑙 (7)

where 𝐿 represents the future horizon used to estimate the advan-
tage,𝛾 is the discount factor and 𝜆 is a hyperparameter representing
state trade-off between bias and variance. 𝛿𝑉𝑡 is the TD-error:

𝛿𝑉𝑡 = 𝑅(𝑠𝑡 , 𝑎𝑡 ) + 𝛾𝑉𝜙 (𝑠𝑡+1) −𝑉𝜙 (𝑠𝑡 ) (8)



where 𝑉𝜙 is the aforementioned state-value function, which is up-
dated by:

𝐽 (𝜙) =
𝐿∑
𝑙=0
(𝛿𝑉𝑡 )

2 (9)

4.3 The Training Procedure
Thewhole training procedure of the framework is depicted in Figure
4 and Algorithm 1. In Algorithm 1 and 2, lines with ⋄ are executed
by the RLMob agent, and lines with ▲ are executed by the RLMob
environment simulator. In Algorithm 1, the horizon 𝐿 represents
the future steps to estimate the advantage and indicates how many
steps the models update. The gradient step 𝐾 indicates how many
times the gradient is updated using one batch of data.

Algorithm 1 RLMob Training Stage
input: ⋄ Initial parameters 𝜃 , 𝜙

for each episode do
▲ Initialize the environment with a random trajectory
▲Make the initial state 𝑠0

for horizon 𝐿 do
for each environment step do
⋄ Sample action from the policy 𝑎𝑡∼𝜋𝜃 (𝑎𝑡 |𝑠𝑡 )
▲ Compute the reward 𝑟𝑡 (See Section 4.1.3)
▲ Combine 𝑎𝑡 to the user historic trajectory
▲Make the next state 𝑠𝑡+1 (See Section 4.1.2)
⋄ Store the transition (𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1, 𝑑𝑜𝑛𝑒)

end for

for gradient step 𝐾 do
⋄ Take out the transition(s) (𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1, 𝑑𝑜𝑛𝑒)
⋄ Update the critic parameters 𝜙 ← 𝜙 − 𝜆𝑉𝜙∇𝜙 𝐽 (𝜙)
⋄ Update policy weights 𝜃 ← 𝜃 − 𝜆𝜋𝜃∇𝜃 𝐽 (𝜃 )

end for
end for

end for
output: ⋄ Optimized parameters 𝜃 , 𝜙

4.4 The Testing Procedure
After some episodes of training, the performance of RLMob is ex-
amined and then the framework continues to alternate between
the training state and the test stage. The test stage is similar to the
training stage. The main difference is that in the test stage we select
the action with the max probability directly rather than sampling.
This is because, in the offline testing procedure, there is no need
for exploration which can impair the overall performance. The
procedure of the offline test of our method is listed in Algorithm 2.

5 EXPERIMENT
In this section, we study the performance of the RLMob agent on the
successive mobility prediction problem. We build a dataset based
on the Wi-Fi data collected at a university and use two publicly

Algorithm 2 RLMob Test Stage

for each episode (item in test dataset) do
▲ Initialize the environment with the historic trajectory
▲Make the initial state 𝑠0

for each environment step do
⋄ Get action from the policy 𝑎𝑡 = argmax

𝑎𝑡

𝜋𝜃 (𝑎𝑡 |𝑠𝑡 )

▲ Compute the reward 𝑟𝑡 (See Section 4.1.3)
▲ Combine 𝑎𝑡 to the user historic trajectory
▲ Make the next state 𝑠𝑡+1 (See Section 4.1.2)
▲⋄Make statistics on 𝑎𝑡

end for
end for

Table 1: The statistics of preprocessed datasets. |U|: number
of users; |P |: number of locations; |C|: number of categories;
|R |: average length of trajectory sequences; |S|: number of
checkins (data items).

Datasets |U| |P| |C| |R| |S|

F-TKY 1729 300 32 98.96 171094
F-NYK 532 500 120 79.91 42514

Univ-WIFI 10966 114 7 17.44 75021

available datasets to test our agent. We perform various comparison
experiments to study the effectiveness of the purposed method.

5.1 Experimental Settings
Dataset. We conduct experiments on three datasets. Foursquare2

datasets are publicly available geotagged social media (GTSM)
datasets with high sparsity, provided by [28]. Experiments are con-
ducted on the subset of Foursquare datasets of two cities, Tokyo
(F-TKY) and New York (F-NYK). Additionally, we collect the Wi-Fi
data of mobile phones at a university and build a dataset called
“Univ-WIFI” (information is properly anonymized and collected on
a voluntary basis), and experiment on the complete dataset.

Details about Data Preprocessing. We apply the method described
in Section 4.1.1 to preprocess the dataset. To make all our compari-
son approaches applicable, every processed user trajectory contains
fixed length of historical trajectory𝑚 and target sessions 𝑛 (𝑚 = 7
and 𝑛 = 5). For all datasets, we filter some invalid data items and
directly split them into training and test datasets with the split
rates 0.8 and 0.2 respectively. Only frequently visited locations are
retained to make the action space in a decent scale and ensure
sufficient training of their embeddings. Datasets are preprocessed
to make the action spaces in different scales for testing in different
settings. Details of preprocessed datasets can be seen in Table 1.

Evaluation Metrics. Since the human mobility prediction prob-
lem can be reduced to a multi-classification problem, we adopted
common metrics for multi-classification. However, these metrics
cannot evaluate negative results. Thus the evaluation combines our
self-designed metrics with those common metrics as follows:

2https://sites.google.com/site/yangdingqi/home



• Episode Final Return. Episode Final Return means the aver-
age final return (sum of all rewards in an episode) over the
test dataset, which is an intuitive performance indicator of RL
algorithms and a comprehensive metric of the simulated user
satisfaction. It is also the direct optimization goal of RLMob, thus
it is the most important metric among our metrics. The definition
of the reward function is in Section 4.1.
• Acc@1. Acc@1 is the ratio of a method’s correct prediction,
which directly indicates performance. “Correct”means the ground
truth location 𝑙∗ (𝑠) is the same as the prediction result 𝐿(𝑠). The
formulation can be represented as:

𝐴𝑐𝑐@1 =
|{𝑠 ∈ 𝑆 : 𝑙∗ (𝑠) = 𝐿(𝑠)}|

|𝑆 | (10)

where |𝑆 | is the test dataset size and 𝑠 is a data item.
• Macro-F1.Macro-F1 is the harmonicmean ofMacro-P andMacro-
R which is averaged across all locations:

Macro-F1 =
2 ×Macro-P ×Macro-R
Macro-P +Macro-R

(11)

where Macro-P is the macro-precision andMacro-R is the macro-
recall.
• CoCiN. CoCiN stands for “Correction of Category in Negative
results”. It represents that even if the agent’s prediction is wrong,
how much the predicted location’s category 𝐶 (𝑠) can at least
match the category of the ground truth 𝑐∗ (𝑠) . It can be formu-
lated as follows:

𝐶𝑜𝐶𝑖𝑁 =
|{𝑠 ∈ 𝑆 : 𝑐∗ (𝑠) = 𝐶 (𝑠), 𝑙∗ (𝑠) ≠ 𝐿(𝑠)}|

|𝑆 | (12)

where |𝑆 | is the test dataset size and 𝑠 is a data item.
• L2-Dist. L2-Dist is the scaled Euclidean Distance between pre-
trained embeddings of the predicted location and the ground
truth. It portrays the deviation of ground truth and the wrong
prediction. Details see Section 4.1.

Implementation Details. To reduce randomness, all our exper-
iments are repeated three times with different random seeds. To
simulate the online scene, our RLMob agent is evaluated on the test
dataset after 5,000 episodes of training on the training dataset.

We empirically find that different user in Univ-WIFI dataset has
similar mobility patterns while the other two Foursquare datasets
have highly personalized user trajectories. Arbitrarily adding user
information to help prediction for Univ-WIFI causes worse perfor-
mance. Thus, user information is not used only in all experiments
of Univ-WIFI dataset.

Hyperparameters Tuning. In our experiments, some key hyper-
parameters are as follows. 𝑘 in Equation 2 is set to 20, 𝑏 in Equation
3 is set to 4 and 𝛼 in Equation 4 is set to 0.2. For all DNN-based
methods, the learning rate is set to 1e-3, which is set to 1e-5 for
all RL-based methods. The discount factor 𝛾 is set to 0.5 and 𝜆 in
Equation 7 is set to 0.8. The clip coefficient 𝜖 in Equation 6 is set to
0.1. In Algorithm 1, the horizon 𝐿 is set to 5 and the gradient step 𝐾
is set to 3. Adam optimizer [12] is applied in all supervised learning
and RL-based approaches.

5.2 Comparison Approaches
The settings of all the approaches are as follows:

Figure 5: The results of Episode Final Return of RL-based
methods on Univ-WIFI. The shade area represents the range
of the values in duplicate experiments. The agents are eval-
uated after 5,000 episodes of training, and a solid dot in the
figure represents the evaluation result.

• MC. Markov chain (MC) [6] regards all the visited locations as
states and builds a transition matrix between these states to
make predictions on human mobility.
• MF. Matrix factorization (MF) [14] is commonly applied in rec-
ommender systems. It takes human mobility prediction as a rec-
ommendation procedure, factorizing the users-locations matrix
to generate user’s preferences and make predictions.
• DNN-based methods. We implement multi-layer perceptron
(MLP), namely deep neural network (DNN) with backpropaga-
tion as our baseline. The inputs of the MLP are embeddings of
historic locations and output are the probabilities of consecutive
target locations. The user information is used as the auxiliary
information in prediction, and the timeslot set is not added due
to information leakage.
• RNN-based methods. We refer to GRU4Rec [10] as for RNN-
based methods. It applies RNN to the session-based recommen-
dation. To adapt it to our scene, we apply the teacher-forcing
technique [27] to extend the prediction to multiple points. We
empirically find that long short-term memory (LSTM, [9, 11]) per-
forms better than gated recurrent unit (GRU, [4]) in our settings
and apply LSTM instead of GRU, which is different in recom-
mender system. In addition to LSTM, a fusion layer that fuses
the user information and one target timeslot in timeslot sets is
jointed. This method is utilized as our baseline in Section 4.1.3 to
reduce the variance of reward. Note that RLMob can be regarded
as an enhancement to the deep learning (DL) methods. Other
state-of-the-art DL methods can also be enhanced by RLMob in
a similar way by replacing the network structure, thus we only
compare GRU4Rec.
• RLMob-REINFORCE. REINFORCE [26] is a Monte-Carlo pol-
icy gradient method, which is a basic form of policy-based RL
algorithms. The fundamental idea is that it increases the pos-
sibility of actions that have high rewards while decreasing the
possibility of actions with low rewards.



Table 2: The performance of all comparison approaches. Improvement indicates the improvement of our method compared
with GRU4Rec because GRU4Rec is the strongest baseline in general. This table only shows best results of all methods.

Dataset Metric/Method MC MF MLP GRU4Rec RLMob-REINFORCE RLMob-Proposed Improvement

Univ-WIFI

Episode Final Return -8.315 -20.93 -0.6380 0.0000 0.2329 2.191 -
Acc@1 0.1350 0.0118 0.2079 0.2110 0.2127 0.2291 8.58%
Macro-F1 0.0472 0.0093 0.2015 0.1565 0.1564 0.1664 5.95%
CoCiN 0.1093 0.2745 0.1489 0.1568 0.1590 0.1745 10.14%
L2-Dist 1.142 1.861 1.223 1.189 1.186 1.185 0.34%

F-TKY

Episode Final Return -6.730 -22.73 -0.5780 0.0000 0.2229 2.397 -
Acc@1 0.2705 0.1842 0.3381 0.3931 0.3948 0.4150 5.57%
Macro-F1 0.2551 0.1535 0.3266 0.3532 0.3449 0.3602 1.98%
CoCiN 0.3023 0.0000 0.2664 0.0031 0.0036 0.0036 16.13%
L2-Dist 0.7933 1.059 0.7714 0.7026 0.6939 0.6623 5.74%

F-NYK

Episode Final Return -3.907 -39.59 -8.027 0.0000 0.0800 0.4402 -
Acc@1 0.3977 0.0755 0.3599 0.4362 0.4369 0.4401 0.73%
Macro-F1 0.4266 0.0781 0.3853 0.4377 0.4407 0.4469 0.89%
CoCiN 0.0170 0.0299 0.0211 0.0036 0.0037 0.0040 7.5%
L2-Dist 1.250 1.944 1.334 1.185 1.185 1.177 0.68%

5.3 Performance Evaluation
The performance of all comparison approaches is shown in Table 2.
Note that: it is meaningless to compute improvement on Episode
Final Return because it is a relative value. Episode Final Return on
GRU4Rec is always zero because we take it as a baseline in the
reward function. Improvement indicates the improvement of our
method compared with GRU4Rec because GRU4Rec is the strongest
baseline in general. Besides, curves on Episode Final Return of two
RL-based approaches on Univ-WIFI dataset are provided in Figure
5 as an example. Results on the other two datasets are similar.

By and large, MF performs the worst on almost all evaluation
metrics. Trivially reduce our successive mobility prediction problem
to a recommendation problem is unpromising, as it cannot capture
the user’s mobility patterns. Besides, it can only recommend one
location without considering any spatial or sequential information.
MC performs better than MF because it considers the sequential
order of user trajectories. However, the non-Markov nature of user
trajectories makes MC a weak baseline.

As for DNN-based methods, MLP generally performs the worst.
Many previous works empirically show that RNN is a better esti-
mator than MLP when handling sequential data and GRU4Rec as
expected, performs better than MLP.

In general, RL-based methods perform the best on user satis-
faction (Episode Final Return) and other metrics as we expected.
RL-based methods circumvent the exposure bias issue of GRU4Rec,
thus they outperform other approaches on the metric Acc@1. RL-
basedmethods also can directly optimize the reward function which
represents user satisfaction. As a result, the metrics of L2-Dist and
CoCiN of RL-based are both improved compared to GRU4Rec. Re-
sults in Figure 5 and Table 2 prove that RLMob-Proposed performs
better than RLMob-REINFORCE on both effectiveness, stability,
and convergence. As many previous works proved that PPO has
better convergence than REINFORCE, it fits better with our scene.
We also find that our agent performs the worst on F-NKY. This
may be owing to the relatively large action space and data sparsity
(weak correlation of two consecutive points) of this dataset.

6 DISCUSSION
Currently, we only run experiments on our RLMob environment
simulator, which cannot strictly reflect user satisfaction in real
production. To further optimize it, a real online test is needed.
With real user feedbacks, the reward function representing user
satisfaction can be modeled more accurately. Another important
future work of us is to solve this problem in the dataset with a larger
action space. It is non-trivial because of the weak convergence of
DRL algorithms and the overestimation issue for problems with
exceedingly large action space. Moreover, to apply our framework
in real production, the inference time of the models should be better
studied. To make the system’s feedback instant, some optimization
like model compression should be carefully considered.

7 CONCLUSION
In this work, we attack the successive mobility prediction problem,
and innovatively leverage deep reinforcement learning (DRL) to
solve the problem. We reduce the problem into a Markov Decision
Process (MDP). We also design the RLMob framework and describe
the interaction flow between the framework and the simulated
environment. Some advanced DRL algorithms that can be applied
to this framework like PPO are introduced. Furthermore, through
experiments, we prove that themethod proposed in this work solves
the difficulties of optimization objective non-differentiability, the
dynamic nature of user demand, and exposure bias when predicting
successive locations. The performance of our method is consistently
better than other compared approaches.
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