

Adaptive Prior-Dependent Correction Enhanced Reinforcement Learning for Natural Language Generation

Wei Cheng, Ziyan Luo[#], Qiyue Yin^{*}

weicheng5993@foxmail.com, z5luo@ucsd.edu, qyyin@nlpr.ia.ac.cn

#Presenting author *Corresponding author

Natural Language Generation

- Neural natural language generation (NLG) aims to generate a piece of new text
 - > neural machine translation (NMT)
 - image captioning
 - text summarization
 - ▶ ...
- NLG models have recently shown remarkable progress in language fluency and coherence
- > We focus the training of Seq2Seq NLG models

Motivation

- > Advantages of RL-based methods:
 - using the current output as the input of next step
 - > directly optimizing the evaluation metric
 - > avoiding the issues of loss inconsistency and exposure bias

	MLE	Other RL methods	Ours
loss inconsistency	\checkmark	-	-
exposure bias	\checkmark	-	-

RL for NLG

Formulation the problem as a Markov Decision Process

MDP Formulation and trial-and-error learning

Motivation

- > Advantages of RL-based methods:
 - using the current output as the input of next step
 - > directly optimizing the evaluation metric
 - > avoiding the issues of loss inconsistency and exposure bias
- However, the reward, such as BLEU/ROUGE, assign the same score to the different incorrect generated tokens, which is called *deviation ignorance*

	MLE	Other RL methods	Ours
loss inconsistency	\checkmark	_	-
exposure bias	\checkmark	-	-
deviation ignorance	\checkmark	\checkmark	-

Deviation Ignorance

The models fail to understand how much the prediction distribution deviates from a prior distribution related to the groundtruth at token-level

The metrics such as *BLEU* and *ROUGE* assign the same scores for the totally different predictions

Ground Truth: "the boy is eating an apple" Predictions:

"the *kid* is eating an apple" ∨ "the boy is *having* an apple" ∨ "the *cat* is eating an apple" × "the boy is eating an *pear*" ×

Methodology

APDC: To alleviate *deviation ignorance* issue, we enhance the RL objective with a KL term with an **adaptive factor**:

 $L(\theta) = -L_{RL}(\theta) + \beta L_{KL}(\theta)$

 Adaptive Factor: negatively correlated to advantage function

$$L_{KL}(\theta) = \sum_{t=0}^{T} e^{-\alpha \tilde{A}^{\pi}(s_t, a_t)} KL\left[p^*(w_t)||p_{\theta}(w_t)\right]$$

♦ The prior distribution:

 $p^{*}(w_{t}) = \sigma\left(cos_sim\left(emb\left(w_{t}^{*}\right), emb\left(w_{t}\right)\right)\right)$

Algorithm 1: APDC Enhanced Reinforcement Learning

Input: The model input S and the ground truth sentence $Y = (w_1^*, w_2^*..., w_L^*)$; Build the NLG model $M(\psi)$ with random initial weights ψ ; Pre-train the $M(\psi)$ with MLE and update $M(\psi)$ to $M(\theta)$; Pre-train the word embedding and compute the prior distribution for all ground-truth tokens w_t^* with the word embedding

 $p^{*}(w_{t}) = \sigma \left(cos_sim \left(emb \left(w_{t}^{*} \right), emb \left(w_{t} \right) \right) \right);$ while not converged do

for each time steps
$$t = 0, ..., T$$
 do
Sample token a_t from the policy π ;
Use K Monte Carlo rollouts inference
algorithm to sample K $a_{t+1:T}$;
Compute the estimated Q-value
 $\tilde{Q}^{\pi}(s_t, a_t) = \frac{1}{K} \sum_{k=1}^{K} R(a_{0:t-1}; a_t; a_{t+1:T}^k);$
Compute the estimated advantage value
 $\tilde{A}^{\pi}(s_t, a_t) = \tilde{Q}^{\pi}(s_t, a_t) - \tilde{Q}^{\pi}(s_{t-1}, a_{t-1});$
Compute the KL divergence
 $D_t(\theta) = e^{-\alpha \tilde{A}^{\pi}(s_t, a_t)} KL [p^*(w_t)||p_{\theta}(w_t)];$

end

Compute the RL loss

$$L_{RL}(\theta) = \sum_{t=0}^{T} \tilde{A}^{\pi}(s_t, a_t) \pi(s_t, a_t);$$
Compute the KL loss

$$L_{KL}(\theta) = \sum_{t=0}^{T} D_t(\theta);$$
Update $M(\theta)$ by minimizing
 $(-L_{RL}(\theta) + \beta L_{KL}(\theta));$
end

Methodology

APG: to reduce variance, we estimate the advantage function per step using the prior knowledge that the transition p(s' | s, a) is determined (≡1 if s' is observed)

$$\tilde{A}^{\pi}(s_t, a_t) = \tilde{Q}^{\pi}(s_t, a_t) - \tilde{Q}^{\pi}(s_{t-1}, a_{t-1})$$
$$\nabla_{\theta} L_{RL}(\theta) = \sum_{t=0}^{T} \mathbb{E}_{\pi}[A^{\pi}(s_t, a_t) \nabla_{\theta} log(\pi_{\theta}(a_t|s_t))]$$

> Leverage K Monte-Carlo rollouts to estimate Q-values

$$\tilde{Q}^{\pi}(s_t, a_t) = \frac{1}{K} \sum_{k=1}^{K} R(a_{0:t-1}; a_t; a_{t+1:T}^k)$$

We evaluate our algorithm in three tasks of NLG

Neural Machine Translation

Table 1: BLEU score of NMT for En-De, En-Zh, and Zh-En.

Method	En-De	En-Zh	Zh-En
Transformer+MLE (Vaswani et al. 2017)	27.30	34.12	24.29
MIXER (Ranzato et al. 2016)	27.43	34.38	24.59
RL4NMT (Wu et al. 2018)	27.52	34.46	24.70
APG	27.63	34.54	24.81
APG+PDC	27.70	34.56	24.90
RL4NMT+PDC	27.81	34.62	24.94
APG+APDC	28.03	34.91	25.28

Image Captioning

Table 2: Performance of image captioning on the MSCOCO Karpathy test split.

Method	BLEU-1	BLEU-4	METEOR	ROUGE-L	CIDEr
SCST (Att2all) (Rennie et al. 2017)	-	34.2	26.7	55.7	114.0
OTRL (Chen et al. 2020a)	79.3	34.4	26.8	56.2	111.8
Top-Down+MLE (Anderson et al. 2018)	77.2	36.2	27.0	56.4	113.5
Top-Down+SCST (Anderson et al. 2018)	79.8	36.3	27.7	56.9	120.1
Top-Down+MIXER (Ranzato et al. 2016)	78.4	36.2	27.4	56.5	115.6
Top-Down+SCST+APDC	79.9	36.6	27.8	56.9	120.2
APG	80.1	36.4	28.0	56.9	120.2
APG+PDC	80.3	36.7	28.4	57.3	121.2
APG+APDC (METEOR)	80.1	36.5	29.2	57.1	119.7
APG+APDC	80.8	37.9	28.9	58.1	123.6

Table 3: Results of abstractive text summarization on CNN/Daily Mail dataset. "Pointer" means the method Pointer-Generator+Coverage.

Abstractive Text Summarization

Method	ROUGE-1	ROUGE-2	ROUGE-L
Pointer (See, Liu, and Manning 2017)	39.53	17.28	36.38
MIXER (Ranzato et al. 2016)	39.78	17.91	37.15
OTRL (Chen et al. 2020a)	41.40	18.22	38.86
APG	41.51	18.34	38.93
APG+PDC	41.60	18.48	39.02
APG+APDC	42.73	18.81	39.85

Comparison Approaches

APG performs better than other RL-based methods

Table 1: BLEU score of NMT for En-De, En-Zh, and Zh-E	Table 1: BLEU	J score of NMT	for En-De,	En-Zh,	and Zh-Er
---	---------------	----------------	------------	--------	-----------

Method	En-De	En-Zh	Zh-En
Transformer+MLE (Vaswani et al. 2017)	27.30	34.12	24.29
MIXER (Ranzato et al. 2016)	27.43	34.38	24.59
RL4NMT (Wu et al. 2018)	27.52	34.46	24.70
APG	27.63	34.54	24.81
APG+PDC	27.70	34.56	24.90
RL4NMT+PDC	27.81	34.62	24.94
APG+APDC	28.03	34.91	25.28

Table 2: Performance of image captioning on the MSCOCO Karpathy test split.

	Method	BLEU-1	BLEU-4	METEOR	ROUGE-L	CIDEr
SCST (Att2a	ll) (Rennie et al. 2017)	-	34.2	26.7	55.7	114.0
OTRL (0	Chen et al. 2020a)	79.3	34.4	26.8	56.2	111.8
Top-Down+MLE (Anderson et al. 2018)		77.2	36.2	27.0	56.4	113.5
Top-Down+SCST (Anderson et al. 2018)		79.8	36.3	27.7	56.9	120.1
Top-Down+MIX	(Ranzato et al. 2016)	78.4	36.2	27.4	56.5	115.6
Top-Dov	vn+SCST+APDC	79.9	36.6	27.8	56.9	120.2
•	APG	80.1	36.4	28.0	56.9	120.2
A	APG+PDC	80.3	36.7	28.4	57.3	121.2
APG+A	PDC (METEOR)	80.1	36.5	29.2	57.1	119.7
A	PG+APDC	80.8	37.9	28.9	58.1	123.6

Table 3: Results of abstractive text summarization on CNN/Daily Mail dataset. "Pointer" means the method Pointer-Generator+Coverage.

Method	ROUGE-1	ROUGE-2	ROUGE-L
Pointer (See, Liu, and Manning 2017)	39.53	17.28	36.38
MIXER (Ranzato et al. 2016)	39.78	17.91	37.15
OTRL (Chen et al. 2020a)	41.40	18.22	38.86
APG	41.51	18.34	38.93
APG+PDC	41.60	18.48	39.02
APG+APDC	42.73	18.81	39.85

APDC can also enhance other RL-based methods

APDC performs better than PDC (APDC without adaptive mechanism)

Table 1: BLEU score of NMT for En-De, En-Zh, and Zh-En.

Method	En-De	En-Zh	Zh-En
Transformer+MLE (Vaswani et al. 2017)	27.30	34.12	24.29
MIXER (Ranzato et al. 2016)	27.43	34.38	24.59
RL4NMT (Wu et al. 2018)	27.52	34.46	24.70
APG	27.63	34.54	24.81
APG+PDC	27.70	34.56	24.90
RL4NMT+PDC	27.81	34.62	24.94
APG+APDC	28.03	34.91	25.28

Table 2: Performance of image captioning on the MSCOCO Karpathy test split.

Method	BLEU-1	BLEU-4	METEOR	ROUGE-L	CIDEr
SCST (Att2all) (Rennie et al. 2017)	-	34.2	26.7	55.7	114.0
OTRL (Chen et al. 2020a)	79.3	34.4	26.8	56.2	111.8
Top-Down+MLE (Anderson et al. 2018)	77.2	36.2	27.0	56.4	113.5
Top-Down+SCST (Anderson et al. 2018)	79.8	36.3	27.7	56.9	120.1
Top-Down+MIXER (Ranzato et al. 2016)	78.4	36.2	27.4	56.5	115.6
Top-Down+SCST+APDC	79.9	36.6	27.8	56.9	120.2
APG	80.1	36.4	28.0	56.9	120.2
APG+PDC	80.3	36.7	28.4	57.3	121.2
APG+APDC (METEOR)	80.1	36.5	29.2	57.1	119.7
APG+APDC	80.8	37.9	28.9	58.1	123.6

Ablation Study illustration

APG+APDC > APG+PDC > APG

Summary

- Formulate the NLG problem as a Markov Decision Process and use an RL to solve the exposure bias and loss inconsistency issues
- Propose a novel technique: adaptive prior-dependent correction to further address the deviation ignorance issue
 - Combine some advantage function estimation techniques
- Enhancing APG with APDC can strike a balance between token-level and sequence-level optimization
- Extensive experiments show that, on three tasks, our method consistently outperforms the state-of-the-art approaches

Thank you for your careful listening!