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Constrained Horn Clauses
CHC: a First Order Logic formula of the following form:  

For all variables (“Constrained”) Conjunction

Unknown predicate symbols (relation)

Implication    p->q means ~p or q

Body Head
• CHC system: a set of CHCs containing rules and queries 
• Rule: head is not P-free (has at least one unknown predicate)
• Query: head is P-free 
• Fact: a rule whose body is P-free (does not have an unknown predicate)



Constrained Horn Clauses

Fact (Rule)
Rule
Query

• A CHC system is SAT    <=> 
There is an interpretation I such that under I all clauses are valid

• How about UNSAT? No such interpretation. How can we prove it?

Relational Post-fixed Point Problem (RPFP)

(\forall x,y)



Constrained Horn Clauses

• By finding a ground refutation of False! (“unwinding” the CHC)
• Namely, find an assignment that for any interpretation that the CHC 
system can never be SAT (one of the CHC is UNSAT is enough)
• Rules can always be SAT as we can set the relations to True
• Then we can simplify the problem by finding an assignment that make all 
rules SAT but make one of the queries UNSAT!

Ex: 
x=y=z=0



Constrained Horn Clauses 
CHC AND PROGRAMS

Example from: A Data-Driven CHC Solver, He et al., PLDI’18

 CHC solving is one of the basis of 

program/hardware verification

CHCs can encode programs and VCs

 For example: (Safety) Inductive Invariant 

learning problem could be reduced to CHC solving 

problem (SAT, correct; UNSAT, buggy)

 Program -> SSA (IR), CFG -> CHC

 Relation (p): vertex in CFG (functionality of a 

basic block)

 Clause: edge in CFG (transition of basic blocks)

Some 
nondeterministic 
expression of x, y

(\forall x,y)
A logical formula such 
that its validity means 

some aspect of program 
correctness.



Loop Invariant Learning

 Learning loop (inductive) invariants is an 

important task in program verification

 Hoare logic

 A loop invariant encodes some basic 

functionality of the loop body

 Precondition: Fact

 Postcondition: Query
Loop Invariant Illustration*

* https://www.cs.mcgill.ca/~xsi/data/code2inv_poster.pdf



Data-driven CHC solving
• CEGAR: counter-example guided abstraction refinement
• The paradigm of learning is one prevailing technique (guess and check)

• Teacher: an oracle, verify the learner’s hypothesis, e.g., Z3
And provide feedback (counterexamples)
• Learner: propose a possible invariant, i.e., hypothesis, 
can apply ML techniques
• The process of learning and teaching is done iteratively
and alternatively
◦ a Counterexample for a CHC is an assignment that refute current hypothesis
◦ Generate positive and negative samples from counterexamples

Figure from: ICE: A Robust Framework for Learning



Data Driven CHC Solving
• Learning by counterexamples

• Program configuration: the values of all variables 
(when entering a basic block)

• Positive samples: A reachable program configuration
• (i, j, p) = (0, 0, 25)  (i=0, j=0, p=25 is reachable)

• Negative samples: A program configuration that can 
never be reached
• (i, j, p) = (100, 0, 25)

• Then the learner could be a classifier that can correctly 
classify the examples and counterexamples!

Example from: ICE: A Robust Framework for Learning



Seahorn: C program to SMT-LIB2 CHC
• Seahorn

• Seahorn is an automated analysis framework for 
LLVM-based languages

• Front end: Takes an LLVM based program (e.g., C, 
C++) as input and generates LLVM IR bitcode

• Middle end: Input the optimized LLVM bitcode
and emits VCs as CHCs

• Back end: Takes CHCs as input and outputs the 
result of the analysis

https://seahorn.github.io/



Example on how the framework works
sum01.c CHC (*.smt file for Z3-Spacer)LLVM IR bitcode Result: Inductive Invariant



Guess: LinearArbitrary

Then the C50 DT  recombines those candidates 
(standard: higher information gain)

Conjunction over nodes in path then 
disjunction over all positive paths

Using SVMs, 
we generate those hyperplanes (candidates)

*: A Data-Driven CHC Solver, He et al., PLDI’18

Great fit to our lightweight machine learning scene 



Check: Z3 (Spacer)
 Negate a CHC (for all -> there exist) and call 

Z3 to get counterexample (SAT, and an 

assignment)

Collect positive samples by implicit

“unwinding” the CHCs like running a program

(positive states are derived from other positive 

states)

 Accumulate positive samples to get more 

accurate interpretation guess (refinement)



Thank you 
for your careful listening!
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