
Constrained Horn Clause Solving
Ray Luo

Constrained Horn Clauses
CHC: a First Order Logic formula of the following form:

For all variables (“Constrained”) Conjunction

Unknown predicate symbols (relation)

Implication p->q means ~p or q

Body Head
• CHC system: a set of CHCs containing rules and queries
• Rule: head is not P-free (has at least one unknown predicate)
• Query: head is P-free
• Fact: a rule whose body is P-free (does not have an unknown predicate)

Constrained Horn Clauses

Fact (Rule)
Rule
Query

• A CHC system is SAT <=>
There is an interpretation I such that under I all clauses are valid

• How about UNSAT? No such interpretation. How can we prove it?

Relational Post-fixed Point Problem (RPFP)

(\forall x,y)

Constrained Horn Clauses

• By finding a ground refutation of False! (“unwinding” the CHC)
• Namely, find an assignment that for any interpretation that the CHC
system can never be SAT (one of the CHC is UNSAT is enough)
• Rules can always be SAT as we can set the relations to True
• Then we can simplify the problem by finding an assignment that make all
rules SAT but make one of the queries UNSAT!

Ex:
x=y=z=0

Constrained Horn Clauses
CHC AND PROGRAMS

Example from: A Data-Driven CHC Solver, He et al., PLDI’18

 CHC solving is one of the basis of

program/hardware verification

CHCs can encode programs and VCs

 For example: (Safety) Inductive Invariant

learning problem could be reduced to CHC solving

problem (SAT, correct; UNSAT, buggy)

 Program -> SSA (IR), CFG -> CHC

 Relation (p): vertex in CFG (functionality of a

basic block)

 Clause: edge in CFG (transition of basic blocks)

Some
nondeterministic
expression of x, y

(\forall x,y)
A logical formula such
that its validity means

some aspect of program
correctness.

Loop Invariant Learning

 Learning loop (inductive) invariants is an

important task in program verification

 Hoare logic

 A loop invariant encodes some basic

functionality of the loop body

 Precondition: Fact

 Postcondition: Query
Loop Invariant Illustration*

* https://www.cs.mcgill.ca/~xsi/data/code2inv_poster.pdf

Data-driven CHC solving
• CEGAR: counter-example guided abstraction refinement
• The paradigm of learning is one prevailing technique (guess and check)

• Teacher: an oracle, verify the learner’s hypothesis, e.g., Z3
And provide feedback (counterexamples)
• Learner: propose a possible invariant, i.e., hypothesis,
can apply ML techniques
• The process of learning and teaching is done iteratively
and alternatively
◦ a Counterexample for a CHC is an assignment that refute current hypothesis
◦ Generate positive and negative samples from counterexamples

Figure from: ICE: A Robust Framework for Learning

Data Driven CHC Solving
• Learning by counterexamples

• Program configuration: the values of all variables
(when entering a basic block)

• Positive samples: A reachable program configuration
• (i, j, p) = (0, 0, 25) (i=0, j=0, p=25 is reachable)

• Negative samples: A program configuration that can
never be reached
• (i, j, p) = (100, 0, 25)

• Then the learner could be a classifier that can correctly
classify the examples and counterexamples!

Example from: ICE: A Robust Framework for Learning

Seahorn: C program to SMT-LIB2 CHC
• Seahorn

• Seahorn is an automated analysis framework for
LLVM-based languages

• Front end: Takes an LLVM based program (e.g., C,
C++) as input and generates LLVM IR bitcode

• Middle end: Input the optimized LLVM bitcode
and emits VCs as CHCs

• Back end: Takes CHCs as input and outputs the
result of the analysis

https://seahorn.github.io/

Example on how the framework works
sum01.c CHC (*.smt file for Z3-Spacer)LLVM IR bitcode Result: Inductive Invariant

Guess: LinearArbitrary

Then the C50 DT recombines those candidates
(standard: higher information gain)

Conjunction over nodes in path then
disjunction over all positive paths

Using SVMs,
we generate those hyperplanes (candidates)

*: A Data-Driven CHC Solver, He et al., PLDI’18

Great fit to our lightweight machine learning scene

Check: Z3 (Spacer)
 Negate a CHC (for all -> there exist) and call

Z3 to get counterexample (SAT, and an

assignment)

Collect positive samples by implicit

“unwinding” the CHCs like running a program

(positive states are derived from other positive

states)

 Accumulate positive samples to get more

accurate interpretation guess (refinement)

Thank you
for your careful listening!

	Constrained Horn Clause Solving
	Constrained Horn Clauses
	Constrained Horn Clauses
	Constrained Horn Clauses
	Constrained Horn Clauses
	Loop Invariant Learning
	Data-driven CHC solving
	Data Driven CHC Solving
	Seahorn: C program to SMT-LIB2 CHC
	Example on how the framework works
	Guess: LinearArbitrary
	Check: Z3 (Spacer)
	幻灯片编号 13

