
Match Plan Generation in Web Search with
Parameterized Action Reinforcement Learning

Ziyan Luo∗, Linfeng Zhao∗, Wei Cheng∗, Sihao Chen, Qi Chen, Hui Xue,
Haidong Wang, Chuanjie Liu, Mao Yang, Lintao Zhang

discat@foxmail.com, zhao.linf@northeastern.edu, weicheng5993@foxmail.com, sihao@berkeley.edu
{cheqi,xuehui,haidwa,chuanli,maoyang,lintaoz}@microsoft.com

∗Equal Contribution

◦ Match plan generation is the key technology
for large scale search engines

◦ Aims
◦ 1. Good result quality (relevance)
◦ 2. Short query response time

◦ Search engines use match plans to help
retrieve relevant documents from billions of
web pages

Introduction
Microsoft Bing

Match Plan Generation Process

 After preprocessing, multiple posting lists are retrieved.

 The search engine scans them by executing a match plan
which is composed of a sequence of match rules.

 A match rule defines how the search engine matches
documents over a period.

It is made up of a discrete match rule type
(e.g.𝑟𝑟𝑢𝑢𝑙𝑙𝑒𝑒𝐴𝐴) and several continuous stopping

quotas (e.g. 𝑀𝑀𝐶𝐶𝐶𝐶<𝑁𝑁).

 Different match rules have different execution
costs.

Match Plan Plays critical role in Web Search

Help to retrieve top candidates in milliseconds.

 Decide the resource allocation for a query.

Help to make the trade-off between relevance and efficiency.

 It’s a secret for search companies.
 No publication, no open source.

 Open toolkits (e.g. Lucene, Elasticsearch) do not have similar strategy.

Why generating match plans is hard?

 The complexity of the system environment
◦ Increasing number of match rule types and quota types
◦ Diverse data distribution across a large number of machines
◦ Frequent updates of documents
◦ Static design cannot dynamically revise the match plan

Multiple objects optimization (e.g. NDCG, latency)

 Sequence decision making (instead of one-time decision)

 Apply in thousands of machines and should be very fast

Need a learning method to
dynamically generate

corresponding match plan
for each query.

A POMDP, a tuple of (S,A,P,R,Ω,O,γ)

State
◦ Intermediate System Signals
◦ Query Embeddings, Statistics

Action: (why to use such formulation?)
◦ Discrete: m types of predefined match rules + Stop
◦ Continuous (shared): n dims of Quotas

Reward a scalar function weighted by:
◦ Performance: “Relevance Scores” (RS) of top k matched

documents (From Bing’s server)
◦ Latency: “Index Block Accesses” (IBA) of the match plan

in the system

Environment Bing’s index server (wrapped)

Problem Formulation

Could We Use Existed RL Algorithm?

• Complex action space
• Complex action: combine discrete and continuous spaces
• Huge action space 17,249,876,309 ∗ 10105

• Instability in training
• Due to the lack of exploration

• Sampling deviation in traditional prioritized replay buffer
• Experiences whose rewards are in certain ranges are more likely to be

sampled, making the agent behave poorly in some state subspaces
• Cause poor performance of learning the value function for some queries

Figure 4. The deviation in original PER.

high priority

high priority

Algorithm DQN TD3 SAC PA-DDPG What we expect

Discreate action √ × √ √ √

Continuous action × √ √ √ √

Discreate & Continuous action × × × √ √

Stability × × √ × √

Performance (better than production) × √ √ × √

Parameterized Action
Soft Actor-Critic

Challenges
◦ Parameterized (discrete-continuous hybrid) action space
◦ Complex environment, large state/action space
◦ Sparse reward, partial observability

PASAC:
◦ 1. Optimize a stochastic policy of the complete action:

discrete match rules (Categorical dist.) and continuous quotas
(Gaussian dist.), meanwhile maximize both entropies

◦ 2. Soft Q network: estimate a joint soft Q-value function for the
complete action

https://github.com/RL-matchplangeneration/Match-Plan-Generation-in-Web-Search

https://github.com/RL-matchplangeneration/Match-Plan-Generation-in-Web-Search

Implementation Details:
◦ Exploration: double alpha tuning to control the

different exploration rate at the discrete and continuous
action spaces

◦ Recurrent state head: dynamic LSTM to solve the
Partially Observation problem

Parameterized Action
Soft Actor-Critic

https://github.com/RL-matchplangeneration/Match-Plan-Generation-in-Web-Search

https://github.com/RL-matchplangeneration/Match-Plan-Generation-in-Web-Search

We further proposed Stratified Prioritized Experience
Replay (SPER) to address the “skewed prioritizing” issue:
◦ skewed prioritizing: experiences whose rewards are in

certain ranges are more likely to be sampled, making the agent
behave poorly in some state subspaces (some queries are
inherently easy/hard to train)

◦ buffer stratifying: the replay buffer is divided into several
bins (strata) according to reward range. The same number of
samples are sampled from each bin by important sampling

◦ priority with TD-error and policy loss:
◦ Transactions with larger improvement potential more likely to be

sampled

Stratified PER

high priority

high priority

bin1 bin2 bin3 bin4

https://github.com/RL-matchplangeneration/Match-Plan-Generation-in-Web-Search

https://github.com/RL-matchplangeneration/Match-Plan-Generation-in-Web-Search

 Q1. Does the proposed algorithm work better than the heuristic hand-crafted method

tuned by engineers, or other RL algorithms?

 Q2. Is it more appropriate that we formulate the problem into a PARL problem, instead

of discretizing the action space?

 Q3. How is the improvement of our method in real search scenes?

 Q4. How is the effect of applying SPER, and its components?

Q5. Does the proposed agent work well on other PARL benchmarking baselines?

Experiments

Experiments
Q1,2,3: Some comparative experiments with the same condition (3,000 test queries in total)

For different RL agents (Table)

For different RL agents (Figure on ARI)

PASAC agent apparently outperforms other SOTA agents in both
stability and efficiency in our scene

Experiments
Performance Improvements for Production

• Significant reduction of index block accesses with relevance on-par
• Manually defined match plans cannot flexibly control the quotas

• Match plans generated by model are typically shorter than production
• Production rules are generalized to all queries in a category, leading to some redundancy rules for a single query

Experiments
Ablation Study

Q4. How is the effect of applying SPER, and its components?

Experiments
Benchmark Games

Q5: Does the proposed agent work well on other PARL benchmarking baselines?

We evaluate our agent in a broader context

• PASAC performs much better than PA-DDPG.
• Stratified sampling may better fit the environment with skewed prioritizing issue if PER is applied.

Summary
• Formulate the match plan generation task to the general PARL framework

• Propose a novel algorithm, Parameterized Action Soft Actor-Critic

• To address the skewed prioritizing issue of PER, Stratified Prioritized
Experience Replay (SPER) is applied

• Experiment results show that our learned match plan significantly outperforms
the production baseline in terms of resource-saving

• Future works include further optimize the model reference time, and inventing
more delicate strategies in exploring the parameterized action space

Thank you
for your careful listening!

	Match Plan Generation in Web Search with Parameterized Action Reinforcement Learning
	幻灯片编号 2
	Match Plan Generation Process
	Match Plan Plays critical role in Web Search
	Why generating match plans is hard?
	Problem Formulation
	Could We Use Existed RL Algorithm?
	Parameterized Action�Soft Actor-Critic
	幻灯片编号 9
	幻灯片编号 10
	Experiments
	Experiments
	Experiments��Performance Improvements for Production
	Experiments�Ablation Study
	幻灯片编号 15
	Summary
	幻灯片编号 17

